Hilfe
  • Allgemeine Hilfe zu diesem Level
    • Achsensymmetrie zur y-Achse:
    • Für alle x aus dem Definitionsbereich gilt:
      f(x) = f(-x)

    • Punktsymmetrie zum Ursprung:
    • Für alle x aus dem Definitionsbereich gilt:
      -f(x) = f(-x)

    • Spezialfall: ganzrationale Funktionen

    • f(x) = f(-x) gilt genau dann, wenn nur gerade Exponenten auftauchen.
      Also gilt:
      Hat eine ganzrationale Funktion nur x-Potenzen mit geraden Hochzahlen, so ist der Graph der Funktion achsensymmetrisch zur y-Achse.

      -f(x) = f(-x) gilt genau dann, wenn nur ungerade Exponenten auftauchen.
      Also gilt:
      Hat eine ganzrationale Funktion nur x-Potenzen mit ungeraden Hochzahlen, so ist der Graph der Funktion punktsymmetrisch zum Ursprung.


    • Hinweis:
    • Die einzige Funktion deren Graph sowohl achsensymmetrisch zur y-Achse also auch punktsymmetrisch zum Ursprung ist, ist f(x)=0.

Untersuche, ob der Graph der Funktion achsensymmetrisch zur y-Achse oder punktsymmetrisch zum Ursprung ist.

f
 
x
=
0,2x
5
0,4x
3
2x
Der Graph
ist achsensymmetrisch zur y-Achse.
ist punktsymmetrisch zum Ursprung.
ist weder achsensymmetrisch zur y-Achse noch punktsymmetrisch zum Ursprung.
  • Nebenrechnung

Mathe-Aufgaben passend zu deinem Lehrplan

Mit unserer Lernsoftware kannst du gezielt die Mathe-Aufgaben üben, die für deine Schule bzw. deinen Lehrplan vorgesehen sind. Wähle deine Schulart und Bundesland und du bekommst Zugriff auf Tausende Online-Übungen zum selber rechnen und lernen.
Lehrplan wählen