(Direkt) proportional heißt: Wenn man die eine Größe verdoppelt/verdreifacht/vervierfacht usw., dann verdoppelt/verdreifacht/vervierfacht usw. sich auch die andere Größe. Z.B. sind direkt proportional:
  • Anzahl der gekauften Äpfel (Größe I) und Preis, den man dafür zahlt (Größe II) unter der Bedingung, dass man pro Apfel gleich viel bezahlt
  • Gefahrene Strecke (Größe I) und Zeit, die dafür benötigt wird (Größe II) unter der Bedingung, dass man mit gleichbleibender Geschwindigkeit fährt

Proportional heißt: Wenn man die eine Größe (x) verdoppelt, verdoppelt sich auch die andere (y). Wenn man x verdreifacht, verdreifacht sich auch y u.s.w.. Da der Quotient aus y und x konstant ist, spricht man von Quotientengleichheit. Den konstanten Quotientenwert y : x nennt man Proportionalitätsfaktor.

Umgekehrt (indirekt, anti-) proportional heißt: Wenn man x verdoppelt, halbiert sich y. Wenn man x verdreifacht, verringert sich y auf den dritten Teil u.s.w.. Da das Produkt aus x und y konstant ist, spricht man von Produktgleichheit.

Beispiel 1
Sei x die Anzahl meiner Kinder und y
  1. die Anzahl der Windeln, die ich im Laufe ihres Lebens für sie kaufen muss
  2. meine abendliche Spielzeit mit ihnen
  3. das Erbe jedes Einzelnen nach meinem Ableben
Entscheide jeweils mit Begründnung, ob ein proportionaler, ein umgekehrt proportionaler (antiproportionaler) oder ein ganz anderer Zusammenhang vorliegt.
Beispiel 2
Natalie beginnt einen Roman, der 330 Seiten umfasst. Nach eine Dreiviertelstunde ist sie auf Seite 21. Überschlage, wie lange sie für das ganze Buch benötigen wird.
Beispiel 3
Prüfe, ob der Zusammenhang proportional, umgekehrt proportional (antiproportional) oder weder noch ist. Gib in den ersten beiden Fällen den noch fehlenden Tabellenwert an.
x
1,8
5
2
1
1
3
y
2
1,44
31
2,7
Beispiel 4
Die Größen x und y stehen in einem umgekehrt proportionalen (antiproportionalem) Zusammenhang. Fülle die Tabelle vollständig aus.
x
11
3
1
7
y
14
1
14
7
11
Beispiel 5
Prüfe, ob der Zusammenhang proportional ist. Wenn ja, gib den Proportionalitätsfaktor q an.
x
1,5
2
3
1
y
0,5
2
9
1
3
Beispiel 6
Die Größen x und y stehen in einem proportionalen Zusammenhang. Fülle die Tabelle vollständig aus.
x
3
1
7
5
y
4
11
1
14
Beispiel 7
Ein Maler benötigt 7,5 Stunden, um eine Fläche von 300 m² zu bemalen. Wieviel Zeit benötigt er für eine Fläche von 500 m²?

Jede Wertetabelle lässt sich grafisch umsetzen, indem man die einzelnen Spalten als Punkte mit entsprechender x- und y-Koordinate liest.

Merke:
  • Bei Proportionalität ergibt sich eine Gerade, die durch den Ursprung des Koordinatensystems geht.
  • Bei umgekehrter Proportionalität (Antiproportionalität) ergibt sich eine sogenannte Hyperbel, deren Äste sich auf die x- und y-Achse zubewegen.
Beispiel
Welcher Graph beschreibt den Zusammenhang zwischen der Fahrtzeit und der durchschnittlichen Geschwindigkeit bei einer Strecke von 400 km?
graphik
Mathe üben

Jetzt online üben und selber rechnen!

110 Mathe-Aufgaben zum Theme "Proportionalität"
Aufgaben rechnen