Ist die Potenzfunktion f mit der Gleichung y = xr, r∈ℚ, in ihrem Definitionsintervall eineindeutig (d.h. jedem y ist genau ein x zugeordnet), so besitzt sie eine Umkehrfunktion f-1. Die Umkehrfunktion ist ebenfalls eine Potenzfunktion, ihr Exponent ergibt sich aus -1/r.
Eine Funktion mit der Gleichung y = xr, r∈ℚ, heißt Potenzfunktion. Ihre maximale Definitionsmenge hängt vom Exponenten r ab. Ist r negativ, so lässt sich die Potenz in einen Bruch umwandeln und damit scheidet "x=0" aus (denn der Nenner darf nicht Null sein). Ist r= p/q ein Bruch und keine ganze Zahl, so lässt sich die Potenz in eine Wurzel umwandeln und damit scheidet "x<0" aus (denn die Wurzel einer negativen Zahl ist nicht definiert).
Sei f eine umkehrbare Funktion und f-1 ihre Umkehrfunktion. Der Graph von f-1 ergibt sich aus dem Graphen von f, indem man bei allen Punkten die x- und y-Koordinate vertauscht. Die Definitionsmenge von f-1 ist dann - logischer Weise - gleich der Wertemenge von f.
Potenzfunktionen f mit dem Funktionsterm f(x) = xr, r∈ℚ, können graphisch ganz unterschiedlich aussehen. Grob lassen sich drei Klassen unterscheiden:
  • r<0: der Graph ähnelt der Hyperbel mit der Gleichung y=1/x. Prägnante Erkennungsmerkmale: die Koordinatenachsen als Asymptoten. Je größer |r| (also der Betrag von r), desto schneller nähert sich der Graph der x-Achse an. Ansonsten ist zu unterscheiden, ob r eine ganze Zahl ist oder nicht. Falls nicht, so ist der Graph nur rechts von der y-Achse definiert. Andernfalls ist die Hyperbel symmetrisch zur y-Achse (r gerade) bzw. zum Ursprung (r ungerade).
  • 0<r<1: ähnlich dem Graph der Wurzelfunktion y = √x. Prägnante Erkennungsmerkmale: nur für x≥0 definiert, streng monoton steigend, für große x ins Unendliche wachsend, aber mit nachlassender Steigung. Je größer |r|, desto schneller geht der Graph für große x-Werte nach oben.
  • r>1: ähnlich der Normalparabel y=x², allerdings nur für x≥0 definiert - es sei denn, r ist eine natürliche Zahl: in diesem Fall symmetrisch zur y-Achse, falls r gerade bzw. zum Ursprung, falls r ungerade. Auch hier gilt: Je größer |r|, desto schneller geht der Graph für große x-Werte nach oben.
Mathe üben

Jetzt online üben und selber rechnen!

21 Mathe-Aufgaben zum Theme "Potenzfunktion - rationaler Exponent"
Aufgaben rechnen