Lernvideo
Ganzrationale Funktionen (Teil 2)
Die Vielfachheit einer Nullstelle wirkt sich auf das Verhalten des Graphen wie folgt aus
  • ungerade Vielfachheit (also einfach, dreifach, fünffach usw.) bedeutet, dass der Graph die x-Achse an der betreffenden Stelle schneidet ("Nullstelle mit Vorzeichenwechsel").
  • gerade Vielfachheit (also doppelt, vierfach, sechsfach usw.) bedeutet, dass der Graph die x-Achse an der betreffenden Stelle berührt ("Nullstelle ohne Vorzeichenwechsel").
Jede Nullstelle einer ganzrationalen Funktion besitzt eine bestimmte Vielfachheit.

Ist a eine Nullstelle, so kann f(x) als Produkt mit Faktor x − a geschrieben werden. Kommt x − a genau n mal als Faktor vor (also "hoch n"), so nennt man a eine n-fache Nullstelle.

Beispiel
Bestimme jeweils die Nullstellen und ihre Vielfachheiten:
f(x)
=
x
1
2
·
x
+
2
g(x)
=
x
2
+
1
·
x
2
4
h(x)
=
x
5
2
+
2
Der Satz vom Nullprodukt sagt:

Ist ein Produkt von zwei Zahlen Null, dann muss mindetens ein Faktor Null sein.

In etwas formalerer Schreibweise: Aus a·b= 0 folgt a = 0 und/oder b = 0.

Es folgt sofort: Ist ein Produkt aus mehreren Faktoren Null, dann muss mindetens ein Faktor Null sein.

Vielfachheit von Lösungen:

Die Gleichung (x-1)2 = 0 hat nur die Lösung x = 1, da der Faktor (x-1) aber zwei Mal auftritt, sagt man, dass x = 1 eine zweifache Lösung ist.

Entsprechend gibt es einfache, dreifache usw. Lösungen.

Beispiel
Löse die Gleichung.
x
1
·
3x
5
2
=
0
Beim Lösen einer Gleichung mit der Unbekannten x kann es hilfreich sein, eine Substitution vorzunehmen. Man ersetzt dabei einen geeigneten x-Term (z.B. x²) durch eine neue Variable, z.B. "z", so dass die Gleichung gelöst werden kann. Wenn man die Lösung(en) für z kennt, findet man die Lösungen für x leicht heraus (Re- / Rücksubstitution).
Beispiel 1
Löse die Gleichung
 
x
4
6x
2
+
8
=
0
Beispiel 2
Löse die Gleichung
 
x
4
6x
2
+
8
=
0
Mathe üben

Jetzt online üben und selber rechnen!

30 Mathe-Aufgaben zum Theme "Ganzrationale Funktionen - Nullstellen ablesen"
Aufgaben rechnen