Lernvideo
Ganzrationale Funktionen (Teil 3)
Lernvideo
Ganzrationale Funktionen (Teil 4)

Das Verfahren der Polynomdivision kann helfen, die Nullstellen einer ganzrationalen Funktion 3. Grades (oder höher) zu bestimmen. Dabei wird die Funktion in ein Produkt aus einem Linearfaktor und einem quadratischen Term umgeschrieben.

Vorgehen:

Gesucht sind die Nullstellen der Funktion f mit f(x)=ax³+bx²+cx+d.
Also muss die Gleichung ax³+bx²+cx+d=0 gelöst werden.

  1. Erraten einer Nullstelle x0
    Falls keine Nullstelle bekannt ist, muss man eine Nullstelle erraten. Dazu setzt man testweise ein paar kleine ganze Zahlen wie 0, 1, 2, -1, ... für x in die Funktion ein. Ist das Ergebnis Null, so hat man eine Nullstelle gefunden.

  2. Polynomdivision
    Der Funktionsterm wird durch den Linearfaktor (x−x0) (also "x minus erste Nullstelle") geteilt. Das Ergebnis der Polynomdivision ist ein quadratischer Term q(x). Der ursprüngliche Funktionsterm kann also jetzt als Produkt geschrieben werden:
    f(x)=q(x)·(x−x0)

  3. Lösen der quadratischen Gleichung
    Aus der Gleichung q(x)=0 gewinnt man mit Hilfe der Mitternachtsformel evtl. bis zu zwei weitere Nullstellen für f(x).
Beispiel
Die Funktion f mit
f(x)
=
x
3
x
2
8x
+
12
hat die Nullstelle
x
0
=
2
Bestimme die weiteren Nullstellen.
x
1
=
?
 
die kleinere
x
2
=
?
 
die größere
Polynome (d.h. ganzrationale Terme) vom Grad 3 oder höher lassen sich evtl. faktorisieren (also in ein Produkt aus mehreren Faktoren zerlegen), indem man
  • eine Nullstelle a errät und dann mittels Polynomdivision durch (x − a) teilt.
  • x oder eine höhere Potenz von x (z.B. x³) ausklammert. Das ist aber nur sinnvoll, wenn das Polynom keine additive Konstante aufweist, wie z.B. bei x³ - 4x² + 3x.
  • eine binomische Formel anwendet.
Ein quadratischer Faktor kann mit Hilfe der Mitternachtsformel evtl. weiter zerlegt werden. Eine ganzrationale Funktion vom Grad n hat höchstens n Nullstellen und zerfällt damit in höchstens n lineare Faktoren.
Beim Lösen einer Gleichung mit der Unbekannten x kann es hilfreich sein, eine Substitution vorzunehmen. Man ersetzt dabei einen geeigneten x-Term (z.B. x²) durch eine neue Variable, z.B. "z", so dass die Gleichung gelöst werden kann. Wenn man die Lösung(en) für z kennt, findet man die Lösungen für x leicht heraus (Re- / Rücksubstitution).
Beispiel 1
Löse die Gleichung
 
x
4
6x
2
+
8
=
0
Beispiel 2
Löse die Gleichung
 
x
4
6x
2
+
8
=
0
Bei einer ganzrationalen Funktion entscheiden die Summanden mit den niedrigsten x-Potenzen, wie sich die Funktion in der Nähe der y-Achse verhält.
Beispiel
Wie verhalten sich die Funktionen in der Umgebung der y-Achse?
f(x)
=
x
4
5x
2
+
1
2
 
x
2
 
      
 
g(x)
=
2x
5
x
4
x
2
Polynomdivision funktioniert ähnlich wie die schriftliche Division, die du bereits aus der Grundschule kennst. Beispiel:

(½ x³ − 4) : (x − 2)
  1. Teile die höchste Potenz des Dividenden durch die höchste Potenz des Divisors:

    ½ x³ : x = ½ x²

  2. Multipliziere dieses Teilergebnis mit dem Divisor und ziehe das Ergebnis vom Dividenden ab:

    ½ x² · (x − 2) = ½ x³ − x²

    ½ x³ − 4 − (½ x³ − x²) = x² − 4

  3. Fahre mit dem Ergebnis der Subtraktion fort wie im ersten Schritt:

    x² : x = x usw.
Ein quadratischer Term (q · x² + r · x + s) kann evtl. als Produkt von zwei linearen Termen (linear ist z.B. x + 2) geschrieben werden. Dies hängt von den Lösungen der entsprechenden Nullgleichung (Mitternachtsformel!) ab:
  • Zwei unterschiedliche Lösungen a und b: der Term zerfällt in q · (x − a) · (x − b).

  • Eine Lösung a: der Term zerfällt in q · (x − a)².

  • Keine Lösung ("Minus unter der Wurzel"): der Term ist nicht zerlegbar.
Beispiel
Zerlege, falls möglich, in Linearfaktoren:
a
 
   
 
2x
2
+
3x
+
2
b
 
   
 
3x
2
+
x
5
Ein quadratischer Term (q · x² + r · x + s) kann evtl. als Produkt von zwei linearen Termen (linear ist z.B. x + 2) geschrieben werden. Dies hängt von den Lösungen der entsprechenden Nullgleichung (pq-Formel!) ab:
  • Zwei unterschiedliche Lösungen a und b: der Term zerfällt in q · (x − a) · (x − b).

  • Eine Lösung a: der Term zerfällt in q · (x − a)².

  • Keine Lösung ("Minus unter der Wurzel"): der Term ist nicht zerlegbar.
Beispiel
Zerlege, falls möglich, in Linearfaktoren:
a
 
   
 
2x
2
+
3x
+
2
b
 
   
 
3x
2
+
x
5
Polynome (d.h. ganzrationale Terme) vom Grad 3 oder höher lassen sich evtl. faktorisieren (also in ein Produkt aus mehreren Faktoren zerlegen), indem man
  • eine Nullstelle a errät und dann mittels Polynomdivision durch (x − a) teilt.
  • x oder eine höhere Potenz von x (z.B. x³) ausklammert. Das ist aber nur sinnvoll, wenn das Polynom keine additive Konstante aufweist, wie z.B. bei x³ - 4x² + 3x.
  • eine binomische Formel anwendet.
Ein quadratischer Faktor kann mit Hilfe der pq-Formel evtl. weiter zerlegt werden. Eine ganzrationale Funktion vom Grad n hat höchstens n Nullstellen und zerfällt damit in höchstens n lineare Faktoren.

Das Verfahren der Polynomdivision kann helfen, die Nullstellen einer ganzrationalen Funktion 3. Grades (oder höher) zu bestimmen. Dabei wird die Funktion in ein Produkt aus einem Linearfaktor und einem quadratischen Term umgeschrieben.

Vorgehen:

Gesucht sind die Nullstellen der Funktion f mit f(x)=ax³+bx²+cx+d.
Also muss die Gleichung ax³+bx²+cx+d=0 gelöst werden.

  1. Erraten einer Nullstelle x0
    Falls keine Nullstelle bekannt ist, muss man eine Nullstelle erraten. Dazu setzt man testweise ein paar kleine ganze Zahlen wie 0, 1, 2, -1, ... für x in die Funktion ein. Ist das Ergebnis Null, so hat man eine Nullstelle gefunden.

  2. Polynomdivision
    Der Funktionsterm wird durch den Linearfaktor (x−x0) (also "x minus erste Nullstelle") geteilt. Das Ergebnis der Polynomdivision ist ein quadratischer Term q(x). Der ursprüngliche Funktionsterm kann also jetzt als Produkt geschrieben werden:
    f(x)=q(x)·(x−x0)

  3. Lösen der quadratischen Gleichung
    Aus der Gleichung q(x)=0 gewinnt man z.B. mit der pq-Formel bis zu zwei weitere Nullstellen für f(x).
Beispiel
Die Funktion f mit
f(x)
=
x
3
x
2
8x
+
12
hat die Nullstelle
x
0
=
2
Bestimme die weiteren Nullstellen.
x
1
=
?
 
die kleinere
x
2
=
?
 
die größere
Liegt ein Funktionsterm in faktorisierter Form vor, also

f(x) = p(x) · q(x)   [evtl. noch mehr Faktoren],

so erhält man alle Nullstellen von f, indem man die Nullstellen der einzelnen Faktoren bestimmt - denn ein Produkt ist Null, wenn ein Faktor Null ist.
Beispiel 1
f
 
x
=
x
4
3x
3
2x
2
·
x
+
1
3
 
. Ermittle alle Nullstellen.
Beispiel 2
f
 
x
=
x
4
3x
3
2x
2
·
x
+
1
3
 
. Ermittle alle Nullstellen.
Mathe üben

Jetzt online üben und selber rechnen!

101 Mathe-Aufgaben zum Theme "Ganzrationale Funktionen - Nullstellen und Faktorisierung"
Aufgaben rechnen