Gehe bei umfangreicheren linearen Gleichungen nach folgendem Schema vor
  1. rechte und linke Seite so weit wie möglich vereinfachen
  2. durch Addition und Subtraktion die Gleichung in die Form ax = b bringen, d.h. zunächst alle x-Vielfachen auf die eine Seite, die andere Seite x-frei
  3. zuletzt durch a teilen
Beispiel 1
Löse die Gleichung
16
3
·
2,5
3x
=
5
+
6x
Beispiel 2
Löse die Gleichung
11x
2
3
=
3
+
2
1
5
Unterscheide:
  • Bei a · x = b muss man (links und rechts) durch a dividieren, um x zu erhalten
  • Bei x : a = b muss man (links und rechts) mit a multiplizieren, um x zu erhalten
  • Bei x + a = b muss man (links und rechts) a subtrahieren, um x zu erhalten
  • Bei x − a = b muss man (links und rechts) a addieren, um x zu erhalten
  • Bei a − x = b muss man (links und rechts) a subtrahieren, um −x zu erhalten
Beispiel
Löse die Gleichungen
2
3
 
x
=
7
1
6
 
   und   
 
2
3
+
x
=
7
1
6
Bei Gleichungen der Form a · x + b = c müssen immer erst die Strichbindungen gelöst werden. Die Punktbindungen sind die engeren Bindungen und bleiben länger bestehen.
Beispiel
Löse die Gleichung
4
·
x
+
9
=
25
Bei Gleichungen der Form

ax + b = cx + d

kommst du weiter, in dem du z.B. "cx nach links" und "b nach rechts" bringst:

ax − cx = d − b

Dadurch sind die x-Vielfachen auf der einen Seite, die andere Seite ist x-frei.
Mathe üben

Jetzt online üben und selber rechnen!

64 Mathe-Aufgaben zum Theme "Lineare Gleichungen mit Brüchen"
Aufgaben rechnen