Achte darauf, ob der Prozentsatz die Differenz zwischen zwei Größen ausdrückt oder ob es darum geht, wie groß die eine Größe im Vergleich zur anderen ist. Eine Differenz ist z.B. bei folgenden Formulierungen gemeint:
  • "um 30% gestiegen"; der neue Wert beträgt dann 130% (= 100% + 30%) gegenüber dem alten, ist also 1,3 mal so groß
  • "Abnahme um 20%"; der neue Wert beträgt dann 80% (= 100% − 20%) gegenüber dem alten, ist also 0,8 mal so groß
  • "15% mehr als"; der größere Wert beträgt dann 115% gegenüber dem kleineren, ist also 1,15 mal so groß
Achte darauf, den Grundwert der Fragestellung anzupassen:
  • Vergrößert man z.B. einen Wert um 10% und verkleinert ihn anschließend wieder um 10% (veränderter Grundwert!), so kommt nicht wieder der Anfangswert heraus.
  • Ist A z.B. 20% größer als B (Grundwert B!), so ist B nicht 20% kleiner als A (Grundwert A!).
Die Grundgleichung der Prozentrechnung lautet:

PS · GW = PW

PS = Prozentsatz
GW = Grundwert
PW = Prozentwert

Beispiel
Überlege jeweils zuvor, ob Prozentwert, Prozentsatz oder Grundwert gefragt sind und löse dann:

(a) Ein Videospiel wurde von ursprünglich 19,90 € um 30% reduziert . Wie viel kostet es jetzt?

(b) Eine Gruppe setzt sich aus 15 Deutschen und 25 Franzosen zusammen. Wie viel Prozent der Gruppenmitglieder sind Deutsche?

(c) In einem reichen Vorort Münchens sind angeblich 22% aller Einwohner Millionäre. Wie viele Einwohner hat der Ort insgesamt, wenn dort 2431 Millionäre leben?

Mathe üben

Jetzt online üben und selber rechnen!

27 Mathe-Aufgaben zum Theme "Prozentrechnung - Gleichungsansatz"
Aufgaben rechnen