In einem Koordinatensystem lassen sich alle Punkte durch zwei Koordinaten angeben. Das Koordinatensystem wird durch zwei senkrecht aufeinander stehende Achsen gebildet. Die waagrechte Achse heißt x-Achse, die senkrechte Achse heißt y-Achse. Die erste Koordinate eines Punktes ist die x-Koordinate, die zweite Koordinate ist die y-Koordinate.
Beispiel
Trage den Punkt P mit P(3|2) ins Koordinatensystem ein.
Der Kreis mit Mittelpunkt M und Radius r enthält genau die Punkte, die von M den Abstand r haben, d.h.
  • AUF dem Kreis liegen die Punkte mit einer Entfernung GLEICH r,
  • INNERHALB des Kreises liegen die Punkte mit einer Entfernung KLEINER als r,
  • AUßERHALB des Kreises liegen die Punkte mit einer Entfernung GRÖßER als r von M.
Beispiel
Markiere in einem KOSY alle Punkte, die vom Punkt P(4|4)
(a) mindestens drei LE enfernt liegen
(b) weniger als zwei LE enfernt liegen
Unter Abstand eines Punktes P von der Gerade g versteht man die kürzeste Entfernung zwischen P und g, also die senkrechte Verbindungsstrecke.
Unterscheide die Schreibweisen
  • Strecke [AB]
  • Gerade AB
  • Halbgerade [AB
  • Länge der Strecke AB
Achte beim Anlegen des Geodreiecks darauf, dass
  • die Basis des Dreiecks an einem der beiden Schenkel anliegt,
  • der Nullpunkt direkt am Scheitel ("Knickpunkt") des Winkels liegt und
  • der andere Schenkel durch die Winkelskala verläuft, um einen Wert ablesen zu können (etl. muss man ihn dazu verlängern).
Schätze den Winkel per Augenmaß ab (größer oder kleiner als 90°), um von der richtigen Skala abzulesen.
Beispiel 1
Gegeben sind die Punkte A(1|2), B(-3|2) und C(3|-4). Zeichne das Dreieck ABC in ein Koordinatensystem ein und miss den Winkel in der Ecke A aus.
Beispiel 2
Gegeben sind die Punkte P (3|-2) und Q (-5|1).
Ergänze die Halbgerade [PQ zu einem 45°-Winkel mit Scheitel in P. Der zweite Schenkel soll die x-Achse schneiden. Die y-Achse schneidet er dann im Punkt (0|?). Ergänze die fehlende y-Koordinate.
Beim Zeichnen von senkrechten und parallelen Linien hilft einem das Geodreieck. Nutze dabei die vorhandenen Hilfslinien.
Beispiel 1
Zeichne eine Gerade, die senkrecht auf g steht und durch den Punkt P geht.
graphik
Beispiel 2
Zeichne eine Gerade, die parallel zu g verläuft und durch den Punkt P geht.
graphik

Alle Punkte, die von einer Geraden g einen bestimmten Abstand d haben, liegen auf einer der beiden Parallelen von g (mit Abstand d).

Alle Punkte, die von den Punkten A und B gleich weit entfernt sind, liegen auf der Senkrechten zu [AB] durch deren Mittelpunkt ("Mittelsenkrechte").

Eine Tangente t berührt einen Kreis im Punkt P und hat damit die Eigenschaft, dass sie senkrecht zur Geraden durch M (Kreismittelpunkt) und P (Berührpunkt) steht.
Beispiel
Zeichne die Tangente an den Kreis im Punkt P.
graphik
Mathe üben

Jetzt online üben und selber rechnen!

153 Mathe-Aufgaben zum Theme "Koordinatensystem"
Aufgaben rechnen