Graphisch lässt sich die mittlere Änderungsrate im Intervall [a; b] als Steigung der Geraden (Sekante) durch die entsprechenden Punkte des Graphen veranschaulichen.

Die lokale Änderungsrate an der Stelle x = a ist folglich die Steigung der Geraden (Tangente), die den Graph im entsprechenden Punkt berührt. Man stelle sich zum besseren Verständnis ein winziges Intervall [a; b] und die zugehörige Sekante vor. Lässt man das Intervall weiter schrumpfen, also b gegen a gehen, wird aus der Sekante eine Tangente.

Beispiel
Schätze die mittlere Änderungsrate im angegebenen Intervall bzw. die lokale Änderungsrate an der gegebenen Stelle ab.
graphik
Intervall [-1; 5]:       
 
m
 
≈ ?
Stelle x
0
=
4:       
 
m ≈ ?
Die mittlere Änderungsrate einer Funktion f im Intervall [a; b] ergibt sich durch

[ f(b) − f(a) ] / ( b − a)

Aufgrund seiner Struktur nennt man diesen Term auch Differenzenquotient.
Beispiel
(1) Maximilian war Ende Januar 1,35 m groß und Ende Juni 1,37 m. Wie groß ist in diesem Zeitraum die durchschnittliche Änderungsrate?
(2) Wie groß ist die durchschnittliche Änderungsrate der Normalparabel mit Scheitel im Ursprung im Intervall [3;7]?

Die Ableitung f´ einer differenzierbaren Funktion f liefert für jede definierte Stelle x die lokale Änderungsrate (= Steigung des Graphen von f an dieser Stelle). Insbesondere zeigt das Vorzeichen von f ´ an, ob f im betrachteten Intervall zunimmt oder abnimmt:

f ´(x) f bzw. Gf
> 0 streng monoton zunehmend bzw. wachsend
< 0 streng monoton abnehmend bzw. fallend
= 0 waagrechte Tangente
Beispiel
Dargestellt ist der Graph der Funktion f. In welchen Intervallen verläuft der Graph der Ableitung f ' oberhalb/unterhalb der x-Achse und wo hat er Nullstellen?
graphik
Rechnerisch ergibt sich die lokale Änderungsrate an der Stelle x = a, indem man den den Grenzwert des Differenzenquotienten

[ f(a+h) − f(a) ] / h

für h → 0 (h ≠ 0) bestimmt. Diesen Grenzwert (sofern er existiert) nennt man Differentialquotient.
Beispiel
Berechne die lokale Änderungsrate an der Stelle a.
f(x)
=
2
x
x
;
a
=
2

Die Funktion F ist genau dann eine Stammfunktion von f, wenn F´ = f (wenn also f die Ableitung von F ist). Damit gilt folgender Zusammenhang

F bzw. GF f (x)
streng monoton steigend > 0 im betrachteten Intervall
streng monoton fallend < im betrachteten Intervall
keine Steigung (waagrechte Tangente) = 0
Hinsichtlich f, F (Stammfunktion von f) und f´ gilt also die "Ableitungskette"

F → f → f´

Ihre Graphen stehen in folgendem Zusammenhang:

F bzw. f f bzw.
streng monoton steigend verläuft oberhalb der x-Achse
streng monoton fallend verläuft unterhalb der x-Achse
waagrechte Tangente schneidet/berührt die x-Achse
Besitzt der Differenzenquotient

[ f(a+h) − f(a) ] / h

für h → 0 (h ≠ 0) keinen Grenzwert, so ist f an der Stelle a nicht differenzierbar.

Das kann sich beispielsweise darin äußern, dass die einseitigen Grenzwerte nicht übereinstimmen. Der Graph weist an einer solchen Stelle einen Knick auf.

Rechnerisch ergibt sich die lokale Änderungsrate an der Stelle x = a, indem man den den Grenzwert des Differenzenquotienten

[ f(x) − f(a) ] / (x − a)

für x → a (x ≠ a) bestimmt. Diesen Grenzwert (sofern er existiert) nennt man Differentialquotient.
Beispiel
Berechne die lokale Änderungsrate an der Stelle x0.
f(x)
=
2
x
x
;
x
0
=
2
Besitzt der Differenzenquotient

[ f(x) − f(a) ] / (x − a)

für x → a (x ≠ a) keinen Grenzwert, so ist f an der Stelle a nicht differenzierbar.

Das kann sich beispielsweise darin äußern, dass die einseitigen Grenzwerte nicht übereinstimmen. Der Graph weist an einer solchen Stelle einen Knick auf.

Beispiel
Ist f an der "Nahtstelle" differenzierbar? Bestimme dazu die einseitigen Grenzwerte des Differenzenquotienten.
graphik
 
f(x)
=
x
·
2
x
Mathe üben

Jetzt online üben und selber rechnen!

53 Mathe-Aufgaben zum Theme "Lokales und globales Differenzieren"
Aufgaben rechnen