Sei B(n) der Bestand nach dem n-ten Zeitschritt. Unterscheide die drei Wachstumsarten:
  • Linear: Zunahme pro Zeitschritt ist - absolut - immer gleich, d.h.
    B(n + 1) = B(n) + d
  • Exponentiell: Zunahme pro Zeitschritt ist - prozentual - immer gleich, d.h.
    B(n + 1) = B(n) · a.
  • Beschränkt: Zunahme pro Zeitschritt ist proportional zum Sättigungsmanko S − B(n) [S ist die Sättigungsgrenze], d.h.
    B(n + 1) = B(n) + c · [S − B(n)]
Sei B(n) der Bestand nach dem n-ten Zeitschritt. Beschränktes Wachstum liegt vor, wenn sich B(n) nach folgender rekursiven Formel berechnen lässt:

B(n + 1) = B(n) + c · [S − B(n)]

S drückt die Schranke des Wachstums aus, c das (konstante) Verhältnis von absoluter Zunahme und dem Sättigungsmanko S − B(n).

Schneller lässt sich B(n) oft mit folgender (nicht rekursiven) Formel berechnen:

B(n) = S − (1 − c)n · [S − B(0)]

Beispiel 1
Die Größe B entwickelt sich, ausgehend vom Anfangsbestand B(0) = b, gemäß der rekursiven Formel für beschränktes Wachstum. Bestimme B(3), wenn bekannt ist: b = 600; B(1) = 780; Proportionalitätsfaktor c = 0,3.
Beispiel 2
Die Größe B entwickelt sich, ausgehend vom Anfangsbestand B(0) = b, gemäß der rekursiven Formel für beschränktes Wachstum. Bestimme B für die ersten 3 Zeitschritte, wobei b = 1000; Schranke S = 5000; Proportionalitätsfaktor c = 0,4.
Mathe üben

Jetzt online üben und selber rechnen!

14 Mathe-Aufgaben zum Theme "Beschränktes Wachstum"
Aufgaben rechnen