Die Kongruenz zweier Dreiecke erkennt man nicht immer sofort. Auf sein Augenmaß darf man sich außerdem auch nicht verlassen. Am sichersten lässt sich die Kongruenz zweier Dreiecke mit Hilfe der sog. Kongruenzsätze feststellen. Zwei Dreiecke sind demnach kongruent, wenn

  • sie in allen drei Seiten übereinstimmen (SSS).
  • sie in einer Seite und zwei zu dieser Seite gleich liegenden Winkeln übereinstimmen (WSW bzw. SWW).
  • sie in zwei Seiten und dem eingeschlossenen Winkel übereinstimmen (SWS).
  • sie in zwei Seiten und dem Winkel, der der größeren Seite gegenüberliegt, übereinstimmen (SsW).
Zwei Figuren heißen kongruent, wenn sie deckungsgleich sind. Praktisch betrachtet heißt das, man kann sie so übereinander legen, dass an keiner Stelle etwas überlappt.
Ein Dreieck wird eindeutig festgelegt durch die Angabe (vergleiche mit den Kongruenzsätzen)
  • aller drei Seitenlängen
  • einer Seitenlänge und zweier Winkel
  • zweier Seitenlängen sowie dem Zwischenwinkel
  • zweier Seitenlängen und dem Winkel, der der größeren Seite gegenüberliegt
Die Angabe von zwei Seiten und einem Winkel, welcher der kleineren der beiden Seiten gegenüberliegt, lässt mehrere Lösungen zu.
Mathe üben

Jetzt online üben und selber rechnen!

57 Mathe-Aufgaben zum Theme "Dreiecke - Kongruenz"
Aufgaben rechnen