Bei einer Potenzfunktion mit der Funktionsgleichung y=axn entscheidet die Hochzahl n zusammen mit dem Vorfaktor a, von wo der Graph kommt und wohin er geht:
  • n ungerade, a positiv (z.B. 5x³): Graph verläuft von links unten nach rechts oben.
  • n ungerade, a negativ (z.B. -2x): Graph verläuft von links oben nach rechts unten.
  • n gerade, a positiv (z.B. ½x²): Graph verläuft von links oben nach rechts oben.
  • n gerade, a negativ (z.B. -x²): Graph verläuft von links unten nach rechts unten.
Beispiel
Wie verläuft der Graph?
y
=
4x
7
Potenzfunktionen sind Funktionen der Form:
y = axn

Spezialfälle:
  • n = 0 (konstante Funktion): y = a, Graph: waagerechte Gerade
  • n = 1 (lineare Funktion): y = ax, Graph: Ursprungsgerade mit Steigung a
  • n = 2 (quadratische Funktion): y = ax2, Graph: gestauchte / gestreckte Parabel mit Scheitel S ( 0 | 0 )

Die Graphen von Potenzfunktionen haben charakteristische Eigenschaften, die oft davon abhängen, ob die Hochzahl n gerade oder ungerade ist.

  • Wertemenge:
    n gerade: keine negativen Zahlen
    n ungerade: alle reellen Zahlen

  • Symmetrie:
    n gerade: Achsensymmetrie zur y-Achse
    n ungerade: Punktsymmetrie zum Ursprung

  • Vorfaktor a
    Der Wert des Parameters a ist der Funktionswert an der Stelle x = 1.
    a>0: Streckung / Stauchung in y-Richtung
    a<0: zusätzliche Spiegelung an der x-Achse
Beispiel
Gib die zugehörige Funktionsgleichung an
graphik
y
=
?x
?
Mathe üben

Jetzt online üben und selber rechnen!

43 Mathe-Aufgaben zum Theme "Potenzfunktionen"
Aufgaben rechnen