Du bist nicht angemeldet!
Hast du bereits ein Benutzer­konto? Dann logge dich ein, bevor du mit Üben beginnst.
Login
Hilfe
  • Allgemeine Hilfe zu diesem Level
    Bei einem mehrstufigen Zufallsexperiment erhält man die Wahrscheinlichkeit eines Ergebnisses, indem man die Wahrscheinlichkeiten des zugehörigen Pfades im Baumdiagramm multipliziert.

Bestimme die gesuchte Wahrscheinlichkeit. Runde, falls nötig, auf ganze Prozent.

In einem Wartezimmer befinden sich noch drei Männer und vier Frauen. Alle haben beim Reinkommen eine Nummer gezogen. Wie groß ist die Wahrscheinlichkeit, dass als nächstes eine Frau, gleich danach ein Mann aufgerufen wird? Es kann davon ausgegangen werden, dass keine weitere Person mehr dazukommt.
P ≈
%
  • Nebenrechnung

Tipp: Wähle deinen Lehrplan, und wir zeigen dir genau die Aufgaben an, die für deine Schule vorgesehen sind.

Lernvideo
Lernvideo

Bei mehrstufigen Zufallsexperimenten kann ein Ereignis E mehrere Pfade im Baumdiagramm umfassen. Um die Wahrscheinlichkeit von E zu bestimmen, muss man die Wahrscheinlichkeiten dieser Pfade addieren.
Bei einem mehrstufigen Zufallsexperiment erhält man die Wahrscheinlichkeit eines Ergebnisses, indem man die Wahrscheinlichkeiten des zugehörigen Pfades im Baumdiagramm multipliziert.
Beispiele für Ereignis und Gegenereignis:

Ereignis A: Mindestens ein Schuss geht daneben.
Gegenereignis A: Kein Schuss geht daneben.

Ereignis B: Höchstens 9 von 10 gezogenen Kugeln sind rot.
Gegenereignis B: Alle gezogenen Kugeln sind rot.

Die Wahrscheinlichkeiten von Ereignis und Gegenereignis ergänzen sich jeweils zu 100%