Aufgaben/Videos
Mathe nach Lehrplan
Mathe nach Schulbuch
Physik
Latein
Preise
Hilfe
Infos
Infos für Schüler
Infos für Eltern
Infos für Lehrer & Schulen
Teilnehmende Schulen
Auszeichnungen
Erfahrungsberichte
Blog
Unser Team
Kontakt
Registrieren
Login
Brüche - darstellen und ordnen - Matheaufgaben
Veranschaulichung von Brüchen an der Zahlengeraden; der Größe nach ordnen; Umwandlung Bruch - gemischte Zahl
Aufgaben
Aufgaben rechnen
Stoff
Stoff ansehen (+Video)
Du bist nicht angemeldet!
Hast du bereits ein Benutzerkonto? Dann logge dich ein, bevor du mit Üben beginnst.
Login
Hilfe
Allgemeine Hilfe zu diesem Level
Beispielaufgabe
Eine gemischte Zahl setzt sich zusammen aus einer ganzen Zahl und (dahinter) einem Bruch. Dazwischen muss man sich ein + denken.
Umwandlung einer gemischten Zahl in einen Bruch: Multipliziere die ganze Zahl mit dem Nenner und addiere dazu den Zähler. Das Ergebnis ergibt den neuen Zähler (der Nenner bleibt unverändert).
Umwandlung von einem Bruch in eine gemischte Zahl: Zähler durch Nenner ergibt die ganze Zahl. Der Rest wandert in den Zähler.
Wandle die gemischte Zahl in einen Bruch um.
4
5
6
=
Nebenrechung
√
Leeren
Zugriff ab Level 2 nur mit Benutzerkonto
Erstelle jetzt ein kostenloses Benutzerkonto. Damit hast du bei all unseren Aufgaben kostenlos Zugriff auf den 1. und 2. Level.
Benutzerkonto erstellen
Tipp
Wenn du Mathegym ohne Vollzugang weiter erkunden möchtest, kannst du entweder einen
anderen Aufgabentyp
wählen. Oder ein paar ausgewählte
Schritt-für-Schritt-Aufgaben
lösen, die wir für dich zusammengestellt haben.
Lehrplan wählen
Tipp: Wähle deinen Lehrplan, und wir zeigen dir genau die Aufgaben an, die für deine Schule vorgesehen sind.
Stoff zum Thema (+Video)
Eine gemischte Zahl setzt sich zusammen aus einer ganzen Zahl und (dahinter) einem Bruch. Dazwischen muss man sich ein + denken.
Umwandlung einer gemischten Zahl in einen Bruch: Multipliziere die ganze Zahl mit dem Nenner und addiere dazu den Zähler. Das Ergebnis ergibt den neuen Zähler (der Nenner bleibt unverändert).
Umwandlung von einem Bruch in eine gemischte Zahl: Zähler durch Nenner ergibt die ganze Zahl. Der Rest wandert in den Zähler.
Beispiel 1
49
5
=
?
gemischte Zahl
Beispiel 2
5
2
7
=
?
Bruch
Haben zwei Brüche denselben Nenner, ist der Bruch größer, der den größeren Zähler besitzt.
Haben zwei Brüche denselben Zähler, ist der Bruch größer, der den kleineren Nenner besitzt.
Beträgt der Zähler mehr als die Hälfte des Nenners, so ist der Bruch größer als 1/2.
Beträgt der Zähler weniger als die Hälfte des Nenners, so ist der Bruch kleiner als 1/2
Es gilt 1/2 < 2/3 < 3/4 < 4/5 u.s.w. (bei diesen Brüchen ist der Zähler um eins kleiner als der Nenner).
Beispiel 1
Vergleiche hinsichtlich ihrer Größe:
5
31
und
7
31
7
4
und
7
3
7
8
und
8
9
6
11
und
3
7
3
20
und
2
15
Beispiel 2
Vergleiche hinsichtlich ihrer Größe:
4
3
11
und 3
17
10
Der Wert eines Bruchs z/n mit Zähler z und Nenner n ist
ganzzahlig, wenn z ein Vielfaches von n ist wie z.B. bei 12/4; der Wert ist dann gleich dem Ergebnis der Division, hier also 12 : 4 = 3
kleiner als 1, wenn der Zähler kleiner als der Nenner ist wie z.B. bei 3/4
größer als 1, wenn der Zähler größer als der Nenner ist wie z.B. bei 7/2
Jede ganze Zahl g lässt sich als Bruch darstellen. Dessen Zähler ist g mal so groß wie der Nenner. Z.B. 3 = 6/2 = 9/3 = 12/4 ... (unendlich viele Möglichkeiten)
Beispiel
?
+
7
5
=
9
Titel
×
...
Schließen
Speichern
Abbrechen