Du bist nicht angemeldet!
Hast du bereits ein Benutzer­konto? Dann logge dich ein, bevor du mit Üben beginnst.
Login
Hilfe
  • Allgemeine Hilfe zu diesem Level
  • Ergibt sich beim schriftlichen Dividieren ein Rest, der schon weiter oben aufgetreten ist, so handelt es sich um einen periodischen Dezimalbruch. Die letzten Ziffern wiederholen sich immerfort. Man schreibt die sich wiederholende Ziffernfolge nur einmal, aber dafür darüber einen Strich (z.B. 0,62 = 0,626262...)

Der entsprechende Dezimalbruch ist periodisch. Bestimme seine Periode (die Ziffernfolge, die sich fortwährend wiederholt).

101
11
Periode:
 
 
  • Nebenrechnung

Tipp: Wähle deinen Lehrplan, und wir zeigen dir genau die Aufgaben an, die für deine Schule vorgesehen sind.

Ergibt sich beim schriftlichen Dividieren ein Rest, der schon weiter oben aufgetreten ist, so handelt es sich um einen periodischen Dezimalbruch. Die letzten Ziffern wiederholen sich immerfort. Man schreibt die sich wiederholende Ziffernfolge nur einmal, aber dafür darüber einen Strich (z.B. 0,62 = 0,626262...)
Beispiel
125:9=13,8...
-9
--
 35
-27
 --
  80
 -72
  --
   8
In der letzten Zeile tritt wie im Schritt zuvor der Rest 8 auf. Also wiederholt sich die Ziffer 8 fortlaufend. Man schreibt für
13,88888...
=
13,
 
8
Setzt sich der Nenner nur aus den Primfaktoren 2 und 5 zusammen, so ist der entsprechende Dezimalbruch endlich.

Stecken dagegen im Nenner noch andere Primfaktoren und lassen sich diese auch nicht herauskürzen, so handelt es sich um einen periodischen Dezimalbruch.

Beispiel
Welche der Brüche ergeben umgewandelt endliche/periodische Dezimalbrüche?
10
12
 
     
 
23
128
 
     
 
39
60
 
     
 
15
21