Du bist nicht angemeldet!
Hast du bereits ein Benutzer­konto? Dann logge dich ein, bevor du mit Üben beginnst.
Login
Hilfe
  • Allgemeine Hilfe zu diesem Level
    Die wichtigsten Werkzeuge beim Umgang mit Strecken und Winkeln in der Raumgeometrie:

    Im rechtwinkligen Dreieck mit (Gegen-)Kathete a und (An-)Kathete b und Hypotenuse c gilt:
    • Der Satz von Pythagoras: a² + b² = c²
    • Trigonometrische Gleichungen: sin(α) = a/c, cos(α) = b/c, tan(α) = a/b

    Auch der Strahlensatz kann in der Raumgeometrie oft weiterhelfen:

    In der V-Figur sind folgende Verhältnisse gleich:

    e : b = f : c = d : a (kleines Dreieck : großes Dreieck)

    e : h = f : g (vorderer Abschnitt : hinterer Abschnitt)

Gesucht sind Strecken bzw. Winkel im Sachzusammenhang. Klicke auf "Schritte", um die Aufgabe in Einzelschritten zu lösen.

graphik
Die Abbildung zeigt einen pyramidenförmigen, unten offenen Lampenschirm. Er besteht aus einem Rahmen aus Drahtstücken, die entlang der Pyramdidenkanten verlaufen und an den Eckpunkten miteinander verlötet sind. Über den Rahmen ist ein Leinwandstoff gespannt, der von innen beleuchtet wird.
Beim Bau der Lampe muss man wissen, welche Drahtlänge in Dezimetern man insgesamt ungefähr benötigt und in welchem Winkel α die Seitenkanten untereinander verlötet werden müssen. Berechne die jeweiligen Werte (auf ganze dm bzw. Grad gerundet), wenn die Lampe die Höhe h = 24cm und eine quadratische Grundfläche mit Seitenlänge s = 20cm besitzen soll. (Runde jedoch keine Zwischenergebnisse, sondern rechne durchgehend mit Taschenrechnergenauigkeit!)
Gesamte Drahtlänge: dm (!)
Winkel: α ≈ °
  • Nebenrechnung

Zugriff ab Level 2 nur mit Benutzerkonto

Erstelle jetzt ein kostenloses Benutzerkonto. Damit hast du bei all unseren Aufgaben kostenlos Zugriff auf den 1. und 2. Level.
Benutzerkonto erstellen

Tipp

Wenn du Mathegym ohne Vollzugang weiter erkunden möchtest, kannst du entweder einen anderen Aufgabentyp wählen. Oder ein paar ausgewählte Schritt-für-Schritt-Aufgaben lösen, die wir für dich zusammengestellt haben.

Tipp: Wähle deinen Lehrplan, und wir zeigen dir genau die Aufgaben an, die für deine Schule vorgesehen sind.
Volumenformeln im Überblick:
  • Quader und Prisma: V = G · h
  • Pyramide: V = ⅓ G · h
  • Zylinder: V = r² π · h
  • Kegel: V = ⅓ r² π · h
Die wichtigsten Werkzeuge beim Umgang mit Strecken und Winkeln in der Raumgeometrie:

Im rechtwinkligen Dreieck mit (Gegen-)Kathete a und (An-)Kathete b und Hypotenuse c gilt:
  • Der Satz von Pythagoras: a² + b² = c²
  • Trigonometrische Gleichungen: sin(α) = a/c, cos(α) = b/c, tan(α) = a/b

Auch der Strahlensatz kann in der Raumgeometrie oft weiterhelfen:

In der V-Figur sind folgende Verhältnisse gleich:

e : b = f : c = d : a (kleines Dreieck : großes Dreieck)

e : h = f : g (vorderer Abschnitt : hinterer Abschnitt)

Oberflächenformeln im Überblick (G: Grundfläche; M: Mantelfläche):
  • Gerades Prisma: O = 2·G + M (Der Mantel besteht aus mehreren Rechtecken)
  • Pyramide: O = G + M (Der Mantel besteht aus mehreren Dreiecken)
  • Zylinder: O = 2·G + M = 2 · r² π + 2 π r · h (G ist eine Kreisfläche, M eine Rechtecksfläche)
  • Kegel: O = G + M = r² π + r π m (G ist eine Kreisfläche, M die Fläche eines Kreissektors)