Du bist nicht angemeldet!
Hast du bereits ein Benutzer­konto? Dann logge dich ein, bevor du mit Üben beginnst.
Login
Hilfe
  • Allgemeine Hilfe zu diesem Level
  • Gehe bei umfangreicheren linearen Gleichungen nach folgendem Schema vor
    1. rechte und linke Seite so weit wie möglich vereinfachen
    2. durch Addition und Subtraktion die Gleichung in die Form ax = b bringen, d.h. zunächst alle x-Vielfachen auf die eine Seite, die andere Seite x-frei
    3. zuletzt durch a teilen

Bestimme x und gib das Ergebnis als gekürzten Bruch an.

2
1
7
 
x
+
3
4
·
1,2x
=
5
x
:
35
x
=
  • Nebenrechnung

Tipp: Wähle deinen Lehrplan, und wir zeigen dir genau die Aufgaben an, die für deine Schule vorgesehen sind.

Bei Gleichungen der Form a · x + b = c müssen immer erst die Strichbindungen gelöst werden. Die Punktbindungen sind die engeren Bindungen und bleiben länger bestehen.
Beispiel
Löse die Gleichung
4
·
x
+
9
=
25
Gehe bei umfangreicheren linearen Gleichungen nach folgendem Schema vor
  1. rechte und linke Seite so weit wie möglich vereinfachen
  2. durch Addition und Subtraktion die Gleichung in die Form ax = b bringen, d.h. zunächst alle x-Vielfachen auf die eine Seite, die andere Seite x-frei
  3. zuletzt durch a teilen
Beispiel 1
Löse die Gleichung
16
3
·
2,5
3x
=
5
+
6x
Beispiel 2
Löse die Gleichung
11x
2
3
=
3
+
2
1
5
Unterscheide:
  • Bei a · x = b muss man (links und rechts) durch a dividieren, um x zu erhalten
  • Bei x : a = b muss man (links und rechts) mit a multiplizieren, um x zu erhalten
  • Bei x + a = b muss man (links und rechts) a subtrahieren, um x zu erhalten
  • Bei x − a = b muss man (links und rechts) a addieren, um x zu erhalten
  • Bei a − x = b muss man (links und rechts) x addieren und b subtrahieren, um x zu erhalten
Beispiel
Löse die Gleichungen
2
3
 
x
=
7
1
6
 
   und   
 
2
3
+
x
=
7
1
6
Bei Gleichungen der Form

ax + b = cx + d

kommst du weiter, in dem du z.B. "cx nach links" und "b nach rechts" bringst:

ax − cx = d − b

Dadurch sind die x-Vielfachen auf der einen Seite, die andere Seite ist x-frei.