Aufgaben/Videos
Mathe nach Lehrplan
Mathe nach Schulbuch
Neu
Physik
Latein
Preise
Hilfe
Infos
Infos für Schüler
Infos für Eltern
Infos für Lehrer & Schulen
Teilnehmende Schulen
Auszeichnungen
Erfahrungsberichte
Blog
Unser Team
Kontakt
Registrieren
Login
Lineare Gleichungen mit Brüchen - Matheaufgaben
Systematisches Lösen linearer Gleichungen, die Brüche und gemischte Zahlen enthalten, durch Vereinfachung und Äquivalenzumformung
Aufgaben
Aufgaben rechnen
Stoff
Stoff ansehen
Du bist nicht angemeldet!
Hast du bereits ein Benutzerkonto? Dann logge dich ein, bevor du mit Üben beginnst.
Login
Hilfe
Allgemeine Hilfe zu diesem Level
Beispielaufgabe
Bei Gleichungen der Form a · x + b = c müssen immer erst die Strichbindungen gelöst werden. Die Punktbindungen sind die engeren Bindungen und bleiben länger bestehen.
Löse folgende Gleichung mithilfe von Äquivalenzumformungen und gib die Lösung an.
2
3
·
x
+
1
2
=
5
6
x
=
Nebenrechung
√
Leeren
Zugriff ab Level 2 nur mit Benutzerkonto
Erstelle jetzt ein kostenloses Benutzerkonto. Damit hast du bei all unseren Aufgaben kostenlos Zugriff auf den 1. und 2. Level.
Benutzerkonto erstellen
Tipp
Wenn du Mathegym ohne Vollzugang weiter erkunden möchtest, kannst du entweder einen
anderen Aufgabentyp
wählen. Oder ein paar ausgewählte
Schritt-für-Schritt-Aufgaben
lösen, die wir für dich zusammengestellt haben.
Lehrplan wählen
Tipp: Wähle deinen Lehrplan, und wir zeigen dir genau die Aufgaben an, die für deine Schule vorgesehen sind.
Stoff zum Thema
Bei Gleichungen der Form a · x + b = c müssen immer erst die Strichbindungen gelöst werden. Die Punktbindungen sind die engeren Bindungen und bleiben länger bestehen.
Beispiel
Löse die Gleichung
4
·
x
+
9
=
25
Gehe bei umfangreicheren linearen Gleichungen nach folgendem Schema vor
rechte und linke Seite so weit wie möglich vereinfachen
durch Addition und Subtraktion die Gleichung in die Form ax = b bringen, d.h. zunächst alle x-Vielfachen auf die eine Seite, die andere Seite x-frei
zuletzt durch a teilen
Beispiel 1
Löse die Gleichung
16
−
3
·
2,5
−
3x
=
5
+
6x
Beispiel 2
Löse die Gleichung
11x
−
2
3
=
3
+
2
1
5
Unterscheide:
Bei a · x = b muss man (links und rechts) durch a
dividieren
, um x zu erhalten
Bei x : a = b muss man (links und rechts) mit a
multiplizieren
, um x zu erhalten
Bei x + a = b muss man (links und rechts) a
subtrahieren
, um x zu erhalten
Bei x − a = b muss man (links und rechts) a
addieren
, um x zu erhalten
Bei a − x = b muss man (links und rechts)
x addieren und b subtrahieren
, um x zu erhalten
Beispiel
Löse die Gleichungen
−
2
3
x
=
7
1
6
und
−
2
3
+
x
=
7
1
6
Bei Gleichungen der Form
ax + b = cx + d
kommst du weiter, in dem du z.B. "cx nach links" und "b nach rechts" bringst:
ax − cx = d − b
Dadurch sind die x-Vielfachen auf der einen Seite, die andere Seite ist x-frei.
Titel
×
...
Schließen
Speichern
Abbrechen