Du bist nicht angemeldet!
Hast du bereits ein Benutzer­konto? Dann logge dich ein, bevor du mit Üben beginnst.
Login
Hilfe
  • Allgemeine Hilfe zu diesem Level
    Der Schwerpunkt eines Dreiecks ist der Punkt, in dem sich alle drei Seitenhalbierenden schneiden.

Gegeben ist das Dreieck mit den Ecken A, B und C. Konstruiere den Schwerpunkt S und gib seine Koordinaten an. Ergebnis(se) mit 1 Dezimalstelle(n) Genauigkeit angeben - geringe Abweichungen vom richtigen Ergebnis werden toleriert!

A(-4|0); B(2|-3); C(5|1)
S( | )
  • Nebenrechnung

Tipp: Wähle deinen Lehrplan, und wir zeigen dir genau die Aufgaben an, die für deine Schule vorgesehen sind.

Der Schwerpunkt eines Dreiecks ist der Punkt, in dem sich alle drei Seitenhalbierenden schneiden.
Punkte, die auf der Mittelsenkrechten einer Strecke [AB] liegen, haben eine exklusive Eigenschaft (d.h. nur sie haben diese Eigenschaft): Sie sind zu A und B gleich weit entfernt. D.h.
  • ist P ein beliebiger Punkt der Mittelsenkrechten, so ist dieser zu A und B gleich weit entfernt.
  • ist irgendein Punkt P von A und B gleich weit entfernt, so muss die Mittelsenkrechte durch P gehen.
Diese Eigenschaft lässt sich z.B. auch nutzen, um eine Winkelhalbierende oder ein Lot zu konstruieren.
Beispiel 1
Gegeben ist die Strecke [AB]. Konstruiere die Mittelsenkrechte.
graphik
Beispiel 2
Ein Winkel soll halbiert werden.
graphik
Beispiel 3
Im Punkt P soll ein Lot zur Geraden g errichtet werden.
graphik
Seitenhalbierende verbinden jeweils einen Eckpunkt des Dreiecks mit der Mitte der gegenüberliegenden Seite.
Punkte, die auf der Mittelsenkrechten einer Strecke AB liegen, haben eine exklusive Eigenschaft (d.h. nur sie haben diese Eigenschaft): Sie sind zu A und B gleich weit entfernt. D.h.
  • ist P ein beliebiger Punkt der Mittelsenkrechten, so ist dieser zu A und B gleich weit entfernt.
  • ist irgendein Punkt P von A und B gleich weit entfernt, so muss die Mittelsenkrechte durch P gehen (darum "exklusiv").
Diese Eigenschaft lässt sich z.B. auch nutzen, um eine Winkelhalbierende oder ein Lot zu konstruieren.
Beispiel 1
Gegeben ist die Strecke AB. Konstruiere die Mittelsenkrechte.
graphik
Beispiel 2
Ein Winkel soll halbiert werden.
graphik
Beispiel 3
Im Punkt P soll ein Lot zur Geraden g errichtet werden.
graphik
Beispiel 4
Gegeben ist das folgende Dreieck. Konstruiere den Höhenschnittpunkt.
graphik
Jeder Punkt auf der Mittelsenkrechten einer Strecke hat zu beiden Endpunkten der Strecke dieselbe Entfernung. Daher gilt folgender Satz:

Die drei Mittelsenkrechten eines jeden Dreiecks schneiden sich in einem Punkt. Dieser Punkt ist von allen drei Ecken gleich weit entfernt, ist also der Mittelpunkt des Umkreises.

Beispiel
Gegeben ist das folgende Dreieck. Konstruiere den Umkreis.
graphik
Die Punkte der Winkelhalbierenden besitzen die Eigenschaft, dass sie zu beiden Schenkeln denselben Abstand haben. Daher gilt folgender Satz:

Die drei Winkelhalbierenden eines jeden Dreiecks schneiden sich in einem Punkt. Dieser Punkt hat von allen drei Seiten denselben Abstand, ist also der Mittelpunkt des Inkreises.

Beispiel
Gegeben ist das folgende Dreieck. Konstruiere den Inkreis.
graphik
Satz des Thales:
  • Liegen A, B und C auf einem Kreis und geht AB durch den Mittelpunkt, so ist das Dreieck ABC bei C rechtwinklig. Man spricht vom "Thaleskreis" über AB.
  • Umgekehrt gilt: ist das Dreieck ABC bei C rechtwinklig, so liegt C auf dem Thaleskreis über AB.
Beispiel
Ermittle durch Konstruktion alle Punkte, von denen aus die beiden Strecken a und b unter einem rechten Winkel erscheinen.
graphik
Satz des Thales:
  • Liegen A, B und C auf einem Kreis und geht [AB] durch den Mittelpunkt, so ist das Dreieck ABC bei C rechtwinklig. Man spricht vom "Thaleskreis" über [AB].
  • Umgekehrt gilt: ist das Dreieck ABC bei C rechtwinklig, so liegt C auf dem Thaleskreis über [AB].
Beispiel
Ermittle durch Konstruktion alle Punkte, von denen aus die beiden Strecken a und b unter einem rechten Winkel erscheinen.
graphik
Fällt man von einem Eckpunkt des Dreiecks das Lot auf die gegenüberliegende Seite, so erhält man die Höhe der entsprechenden Seite. In jedem Dreieck schneiden sich alle drei Höhen (evtl. verlängert) in einem Punkt.
Beispiel
Gegeben ist das folgende Dreieck. Konstruiere den Höhenschnittpunkt.
graphik