Du bist nicht angemeldet!
Hast du bereits ein Benutzer­konto? Dann logge dich ein, bevor du mit Üben beginnst.
Login
Hilfe
  • Allgemeine Hilfe zu diesem Level
  • Für den Mittelpunkt M(x|y) einer Strecke [AB] mit A(xA|yA) und B(xB|yB) gilt:

    x = (xA + xB) : 2
    y = (yA + yB) : 2

Berechne den Mittelpunkt M der Strecke von A nach B mit Hilfe von Vektoren.

A(2|3) und B(5|7)
M
 
|
  • Nebenrechnung

Tipp: Wähle deinen Lehrplan, und wir zeigen dir genau die Aufgaben an, die für deine Schule vorgesehen sind.

Für den Mittelpunkt M(x|y) einer Strecke [AB] mit A(xA|yA) und B(xB|yB) gilt:

x = (xA + xB) : 2
y = (yA + yB) : 2

Beispiel
Berechne den Mittelpunkt der Strecke [PQ], wenn P(2|5) und Q(4|1) ist.
M
 
2
+
4
2
 
|
 
5
+
1
2
M
 
3
 
|
 
3
Die Verknüpfung von zwei Parallelverschiebungen kann durch eine einzige Parallelverschiebung ersetzt werden. Der neue Verschiebungsvektor errechnet sich aus der Summe der beiden ursprünglichen Vektoren.
Beispiel
Gegegeben sind die Vektoren
 
v
1
=
3
2
 
und
 
v
2
=
4
4
 
.
Zwei Parallelverschiebungen hintereinander mit diesen beiden Vektoren können ersetzt werden durch eine Parallelverschiebung mit dem Summenvektor:
v
=
v
1
 
 
v
2
v
=
3
2
 
 
4
4
v
=
1
6