Du bist nicht angemeldet!
Hast du bereits ein Benutzer­konto? Dann logge dich ein, bevor du mit Üben beginnst.
Login
Hilfe
  • Allgemeine Hilfe zu diesem Level

Zeichne und lies aus dem Graphen ab.

Bankräuber Karloff lebt von der Beute seines letzten Überfalls (monatlich konstante Ausgaben). Nach 4 Monaten sind davon noch 18000 Euro, nach 14 Monaten nur noch 3000 Euro übrig. Stelle den Zusammenhang zwischen Zeit (Einheit = 1 Monat) und Restbeute (Einheit = 1000 Euro) in einem Diagramm dar. Lies dann ab:
Die ursprüngliche Beute betrug
 
 
Euro.
Nach
 
 
Monaten ist alles verprasst.
  • Nebenrechnung

Zugriff ab Level 2 nur mit Benutzerkonto

Erstelle jetzt ein kostenloses Benutzerkonto. Damit hast du bei all unseren Aufgaben kostenlos Zugriff auf den 1. und 2. Level.
Benutzerkonto erstellen

Tipp

Wenn du Mathegym ohne Vollzugang weiter erkunden möchtest, kannst du entweder einen anderen Aufgabentyp wählen. Oder ein paar ausgewählte Schritt-für-Schritt-Aufgaben lösen, die wir für dich zusammengestellt haben.

Tipp: Wähle deinen Lehrplan, und wir zeigen dir genau die Aufgaben an, die für deine Schule vorgesehen sind.

Lernvideo
Lineare Funktionen (Teil 1)

Eine lineare Funktion mit der Gleichung y = m·x + c ergibt grafisch immer eine Gerade. Dabei ist m die Steigung (zeigt an, wie stark die Gerade steigt oder fällt) und c der y-Achsenabschnitt (zeigt an, wo die Gerade die y-Achse schneidet) der Gerade.

  • Ist m positiv, so steigt die Gerade (von links nach rechts)
  • Ist m negativ, so fällt die Gerade (von links nach rechts)
  • Ist m = 0, so verläuft die Gerade parallel zur x-Achse
Beispiel
Welche Informationen lassen sich bzgl. der Steigung m und des y-Achsen-Abschnitts c ablesen?
graphik
Eine lineare Funktion mit der Gleichung y = m·x + b ergibt grafisch immer eine Gerade. Dabei ist m die Steigung (zeigt an, wie stark die Gerade steigt oder fällt) und b der y-Achsenabschnitt (zeigt an, wo die Gerade die y-Achse schneidet) der Gerade.
  • Ist m positiv, so steigt die Gerade (von links nach rechts)
  • Ist m negativ, so fällt die Gerade (von links nach rechts)
  • Ist m = 0, so verläuft die Gerade parallel zur x-Achse
Beispiel 1
Welche Informationen lassen sich bzgl. der Steigung m und des y-Achsen-Abschnitts b ablesen?
graphik
Beispiel 2
Zeichne die Gerade mit folgender Gleichung:
 
y
=
2
1
3
 
x
Beispiel 3
Bestimme zeichnerisch: Welchen y-Achsenabschnitt besitzt die Gerade g, die durch den Punkt (-3 ; -1) geht und parallel ist zur Geraden h mit der Gleichung y = 1 − 0,25x ?

Eine lineare Funktion mit der Gleichung y = m·x + t ergibt grafisch immer eine Gerade. Dabei ist m die Steigung (zeigt an, wie stark die Gerade steigt oder fällt) und t der y-Achsenabschnitt (zeigt an, wo die Gerade die y-Achse schneidet) der Gerade.

  • Ist m positiv, so steigt die Gerade (von links nach rechts)
  • Ist m negativ, so fällt die Gerade (von links nach rechts)
  • Ist m = 0, so verläuft die Gerade parallel zur x-Achse
Beispiel
Welche Informationen lassen sich bzgl. der Steigung m und des y-Achsen-Abschnitts t ablesen?
graphik
Jede nicht senkrechte Gerade und damit jede lineare Zuordnung kann durch eine Gleichung ähnlich

y = 1/3 x + 1

beschrieben werden.
Beispiel
Beschreibe die drei Geraden jeweils durch eine Gleichung von der Art y = ? · x + ?.
graphik
- - - - - - - - - - - Schwarz:
Für x = 0 ergibt sich y = -2, also hat der Summand am Ende des Terms den Wert -2.
graphik
Am sogenannten Steigungsdreieck erkannt man: Nimmt x um 2 Einheiten zu, so nimmt y um 3 Einheiten zu, also hat der Faktor vor x den Wert 3/2 .
y
=
3
2
 
x
2
- - - - - - - - - - - Grün:
Für x = 0 ergibt sich y = -1, also hat der Summand am Ende des Terms den Wert -1.
graphik
Nimmt x um 2 Einheiten zu, so nimmt y um 1 Einheit ab, also hat der Faktor vor x den Wert -1/2 ("Minus" da "abnehmend").
y
=
1
2
 
x
1
- - - - - - - - - - - Orange:
y ist immer 0,5 (unabhängig von x), also lautet die Gleichung y = 0,5 (das heißt der Faktor vor x hat den Wert 0).
Mit zunehmenden x-Werten
  • nehmen auch die y-Werte zu, falls die Gerade steigt,
  • nehmen die y-Werte ab, falls die Gerade fällt,
  • sind die y-Werte konstant, falls die Gerade parallel zur x-Achse verläuft.
Für x = 0 ergibt sich
  • ein positiver y-Wert, falls die Gerade die y-Achse oberhalb der x-Achse schneidet,
  • ein negativer y-Wert, falls die Gerade die y-Achse unterhalb der x-Achse schneidet,
  • der y-Wert 0, falls die Gerade durch den Ursprung geht.
Um den Funktionsterm einer abgebildeten Geraden zu ermitteln, gehe wie folgt vor:
  1. Der y-Achsenabschnitt lässt sich direkt aus dem Schnittpunkt der Geraden mit der y-Achse ablesen.
  2. Suche zwei Punkte auf der Geraden, deren Koordinaten sich gut ablesen lassen und betrachte das Steigungsdreieck zwischen diesen beiden Punkten. Die Breite des Dreiecks ergibt den Nenner, die Höhe des Dreiecks den Zähler der Steigung.
  3. Falls die Gerade fällt, schreibe noch ein Minus vor den oben ermittelten Bruch. Damit hast du die Steigung.
Beispiel 1
Lies jeweils die genauen Werte für m und b ab:
graphik
Beispiel 2
Lies jeweils die genauen Werte für m und c ab:
graphik
Beispiel 3
Lies jeweils die genauen Werte für m und t ab:
graphik
Um die Gerade mit der Gleichung y=mx+t zu zeichnen, gehe am besten wie folgt vor:
  1. Stelle die Steigung m als Bruch dar (falls nicht schon als Bruch gegeben), z.B. m = -1/4 .
  2. Gehe vom Schnittpunkt mit der y-Achse, also P(0|t) aus um den Nennerbetrag, hier also um 4, nach rechts.
  3. Gehe dann um den Zählerbetrag nach oben (falls m postiv) bzw. unten (falls m negativ). Hier also um 1 nach unten. Damit hast du einen zweiten Punkt und kannst die Gerade zeichnen.
Die Schritte 2 und 3 können auch vertauscht werden. Ebenso ist es egal, ob du Kästchen oder ganze Einheiten abzählst. Wichtig ist nur, dass du nach rechts und nach oben (bzw. unten) die gleichen Schrittlängen abgehst.
Beispiel 1
Zeichne die Gerade mit folgender Gleichung:
 
y
=
2
1
3
 
x
Beispiel 2
Bestimme zeichnerisch: Welchen y-Achsenabschnitt besitzt die Gerade g, die durch den Punkt (-3 ; -1) geht und parallel ist zur Geraden h mit der Gleichung y = 1 − 0,25x ?
Jede lineare Gleichung mit einer Unbekannten kann auch zeichnerisch gelöst werden: Die Terme links und rechts vom Ist-gleich-Zeichen werden dabei als Geraden interpretiert (y = ...). Zeichne die Geraden ein und schaue, ob und - wenn ja - wo sie sich schneiden.

Spezialfall: Besteht der Term links oder rechts vom Ist-gleich-Zeichen nur aus einer Zahl c, so handelt es sich um eine waagrechte Gerade durch den Punkt (0|c). Ist diese Zahl c = 0, so handelt es sich um die x-Achse.

Beispiel
Löse durch Zeichnung:
a
 
2
1
2
 
x
=
3
+
1,5
 
x
 
     
 
b
3x
+
0,25
=
1
2
Jede lineare Gleichung mit zwei Variablen x und y kann als Gerade interpretiert werden. Jeder Punkt (x- und y-Koordinate) der Gerade stellt eine von unendlich vielen Lösungen dar.
Beispiel
0,6x
0,75y
=
1,8
Stelle diese Gleichung als Gerade dar und lies drei Lösungen ab.
Beispiel
Dirk wiegt 72 kg und möchte mit Krafttraining Muskelmasse aufbauen, um Wrestler im Superschwergewicht zu werden. Mit Hilfe eines strengen Trainings- und Ernährungsplans will er monatlich 5 kg zulegen. Sebastian hat mit 102 kg deutlich Übergewicht und will durch eine disziplinierte Diät wöchentlich 500g abnehmen. Nach wie vielen Wochen wären Dirk und Sebastian gleich schwer, wenn sie mit der Umsetzung ihrer Pläne zur selben Zeit beginnen und durchhalten?
Gegeben ist die Gleichung einer Geraden. Um sie zu zeichnen, benötigt man zwei Punkte. Diese erhält man z.B., indem man zwei unterschiedliche x-Werte in die Gleichung einsetzt und die zugehörigen y-Werte ausrechnet. Praktischer Weise sollte man mit x=0 anfangen (wenig Rechenaufwand; der zugehörige y-Wert ist der y-Achsenabschnitt).
Beispiel
Zeichne die Gerade mit folgender Gleichung:
 
y
=
2
1
3
 
x
Eine Besonderheit bilden waagrechte und senkrechte Geraden.
  • senkrechte Gerade werden durch die Gleichung "x = c" beschrieben
  • waagrechte Gerade werden durch die Gleichung "y = c" beschrieben.

Beachte, dass die Gleichung der senkrechten Gerade keine Funktionsgleichung ist und somit weder ein y-Achsenabschnitt noch eine Steigung angegeben werden kann. Das ist schon daran erkennbar, dass hier Punkte des Graphen "übereinander" liegen, was bei einer Funktion nicht vorkommen darf.

Beispiel 1
Gib für die eingezeichneten Geraden sowie für die x-und y-Achse eine Geradengleichung an:
graphik
Beispiel 2
Gib für die eingezeichneten Geraden sowie für die x-und y-Achse eine Geradengleichung an:
graphik
Beispiel 3
Gib für die eingezeichneten Geraden sowie für die x-und y-Achse eine Geradengleichung an:
graphik