Du bist nicht angemeldet!
Hast du bereits ein Benutzer­konto? Dann logge dich ein, bevor du mit Üben beginnst.
Login
Hilfe
  • Allgemeine Hilfe zu diesem Level
    Das Zählprinzip hilft nicht nur bei der Bestimmung von |Ω|, sondern oft auch bei der Berechnung von |E|, also der Mächtigkeit eines bestimmten Ereignisses.

Berechne.

In einer Urne befinden sich zwei schwarze, eine rote und drei weiße Kugeln. Vier Kugeln werden hintereinander - ohne Zurücklegen - blind aus der Urne genommen. Mit welcher Wahrscheinlichkeit ist darunter keine einzige rote?
P
=
  • Nebenrechnung

Tipp: Wähle deinen Lehrplan, und wir zeigen dir genau die Aufgaben an, die für deine Schule vorgesehen sind.
Das Zählprinzip hilft nicht nur bei der Bestimmung von |Ω|, sondern oft auch bei der Berechnung von |E|, also der Mächtigkeit eines bestimmten Ereignisses.

Setzt sich ein Zufallsexperiment aus mehreren Stufen zusammen (z.B. drei mal hintereinander Würfeln oder sechs Kugeln hintereinander aus einer Urne ziehen) so lässt sich die Mächtigkeit der Ergebnismenge mit dem sogenannten Zählprinzip bestimmen. Hier ein Beispiel bei einem vierstufigen Experiment:

1. Stufe: 8 Möglichkeiten
2. Stufe: 7 Möglichkeiten
3. Stufe: 6 Möglichkeiten
4. Stufe: 5 Möglichkeiten
Dann gibt es insgesamt 8⋅7·6·5 = 1680 Möglichkeiten.

Oft entstehen hierbei Produkte der Art n·(n-1)·(n-2)·...·2·1; dafür gibt es die abkürzende Schreibweise n! ("n-Fakultät").