Hilfe
  • Allgemeine Hilfe zu diesem Level
    Nimm die Zahl vor x und halbiere diese.

Der Term soll so umgeformt werden, dass man den Extremwert ablesen kann. Ergänze.

  • T(x)
    =
    x
    2
    +
    4x
    +
    7
    quadratische Ergänzung
    =
    x
    2
    +
    4x
    +
    2
    2
    +
    7
    binomische Formel
    =
    x
    +
    2
    +
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.

Tipp: Wähle deinen Lehrplan, und wir zeigen dir genau die Aufgaben an, die für deine Schule vorgesehen sind.
Die Gleichung einer quadratischen Funktion bzw. Parabel kann von jeder Form aus in jede andere Form umgewandelt werden:
  • Allgemeine Form ⇒ Scheitepunktform: mittels quadratischer Ergänzung
  • Allgemeine Form ⇒ Nullstellenform: mittels Nullstellenbestimmung, z.B. mit Hilfe der Miternachts- oder der p-q-Formel
  • Scheitelpunktform ⇒ allgemeine Form: Ausmultiplizieren (binomische Formel) und vereinfachen
  • Scheitelpunktform ⇒ Nullstellenform: mittels Nullstellenbestimmung, wobei hier keine Lösungsformel notwendig ist
  • Nullstellenform ⇒ allgemeine Form: Ausmultiplizieren und vereinfachen
  • Nullstellenform ⇒ Scheitelpunktform: xS ergibt sich als Mittelwert der Nullstellen, yS durch Einsetzen von xS in den Funktionsterm
Beispiel
Allgemeine Form - Scheitelpunktform - Nullstellenform: Wandle jeweils von der gegebenen in die beiden anderen Formen um.
a) 
y
=
1
3
 
x
+
1
2
2
b) 
y
=
1
2
 
x
2
5x
+
8
c) 
y
=
3
·
x
2
·
x
+
1
Man unterscheidet bei einer Parabel zwischen
  • Allgemeiner Form   y = ax² + bx + c   ⇒ Ablesen des Schnittpunkts mit der y-Achse (0;c)
  • Scheitelpunktform   y = a (x - xS)² + yS   ⇒ Ablesen des Scheitels S

Von der allgemeinen Form ausgehend erhält man die Scheitelpunktform mithilfe der quadratischen Ergänzung.

Beispiel
Bringe 
y
=
1
4
 
x
2
2x
+
1
 in Scheitelpunktform und gib den Scheitel an.
Von der Scheitelpunktform
y = a⋅(x - xS) + yS
kommt man durch ausquadrieren bzw. dem Anwenden der binomischen Formeln zur allgemeinen Form:
y = a⋅x² + bx + c
Beispiel
Bringe in die allgemeine Form und gib dann die Parameter a, b und c an:
y
=
5
·
x
+
2
2
1
Bei der Gleichung einer quadratischen Funktion bzw. Parabel unterscheidet man folgende Formen:
  1. Allgemeine Form:
    y=ax²+bx+c
    Hieraus lässt sich der Schnittpunkt mit der y-Achse (0|c) ablesen.
     
  2. Scheitelpunktform:
    y=a·(x−xS)²+yS
    Hieraus lässt sich der Scheitelpunkt S(xS|yS) ablesen.
     
  3. Nullstellenform (Produktform/faktorisierte Form):
    y=a·(x−x1)·(x−x2)
    Hieraus lassen sich die Nullstellen x1 und x2 ablesen.