Du bist nicht angemeldet!
Hast du bereits ein Benutzer­konto? Dann logge dich ein, bevor du mit Üben beginnst.
Login
Hilfe
  • Allgemeine Hilfe zu diesem Level

    Die Funktion F ist genau dann eine Stammfunktion von f, wenn F´ = f (wenn also f die Ableitung von F ist). Damit gilt folgender Zusammenhang

    F bzw. GF f (x)
    streng monoton steigend > 0 im betrachteten Intervall
    streng monoton fallend < im betrachteten Intervall
    keine Steigung (waagrechte Tangente) = 0

Mit F sei eine Stammfunktion von f (siehe Graph) bezeichnet. Kreuze richtig an (pro Zeile kein oder mehrere Kreuze möglich).

graphik
Im Intervall ]−∞ −2[ nimmt...
...f streng mon.    
ab   
zu     ...F streng mon.    
ab   
zu
An der Stelle x = -2 nimmt...
...f lokal weder zu noch ab          
 
...F lokal weder zu noch ab
  • Nebenrechnung

Tipp: Wähle deinen Lehrplan, und wir zeigen dir genau die Aufgaben an, die für deine Schule vorgesehen sind.

Lernvideo
Ableitung einer Funktion
Lernvideo
Graph der Ableitung skizzieren
Lernvideo
Graph einer Stammfunktion skizzieren

Die Funktion F ist genau dann eine Stammfunktion von f, wenn F´ = f (wenn also f die Ableitung von F ist). Damit gilt folgender Zusammenhang

F bzw. GF f (x)
streng monoton steigend > 0 im betrachteten Intervall
streng monoton fallend < im betrachteten Intervall
keine Steigung (waagrechte Tangente) = 0

Die Ableitung f´ einer differenzierbaren Funktion f liefert für jede definierte Stelle x die lokale Änderungsrate (= Steigung des Graphen von f an dieser Stelle). Insbesondere zeigt das Vorzeichen von f ´ an, ob f im betrachteten Intervall zunimmt oder abnimmt:

f´(x) f bzw. Gf
> 0 streng monoton zunehmend bzw. wachsend
< 0 streng monoton abnehmend bzw. fallend
= 0 waagrechte Tangente
Beispiel
Dargestellt ist der Graph der Funktion f. In welchen Intervallen verläuft der Graph der Ableitung f ' oberhalb/unterhalb der x-Achse und wo hat er Nullstellen?
graphik
Hinsichtlich f, F (Stammfunktion von f) und f´ gilt also die "Ableitungskette"

F → f → f´

Ihre Graphen stehen in folgendem Zusammenhang:

F bzw. f f bzw.
streng monoton steigend verläuft oberhalb der x-Achse
streng monoton fallend verläuft unterhalb der x-Achse
waagrechte Tangente schneidet/berührt die x-Achse
Besitzt der Differenzenquotient

[ f(a+h) − f(a) ] / h

für h → 0 (h ≠ 0) keinen Grenzwert, so ist f an der Stelle a nicht differenzierbar.

Das kann sich beispielsweise darin äußern, dass die einseitigen Grenzwerte nicht übereinstimmen. Der Graph weist an einer solchen Stelle einen Knick auf.

Besitzt der Differenzenquotient

[ f(x) − f(a) ] / (x − a)

für x → a (x ≠ a) keinen Grenzwert, so ist f an der Stelle a nicht differenzierbar.

Das kann sich beispielsweise darin äußern, dass die einseitigen Grenzwerte nicht übereinstimmen. Der Graph weist an einer solchen Stelle einen Knick auf.

Beispiel
Ist f an der "Nahtstelle" differenzierbar? Bestimme dazu die einseitigen Grenzwerte des Differenzenquotienten.
graphik
 
f(x)
=
x
·
2
x