Du bist nicht angemeldet!
Hast du bereits ein Benutzer­konto? Dann logge dich ein, bevor du mit Üben beginnst.
Login
Hilfe
  • Allgemeine Hilfe zu diesem Level

    Bestimmung der lokalen Maxima und Minima einer Funktion:

    1. Bestimme die Nullstellen der ersten Ableitung der Funktion.
    2. Überprüfe mithilfe des Vorzeichenwechsel-Kriteriums, ob im Graph ein Hoch- oder Tiefpunkt vorliegt.

    Randextrema:

    Untersuche, ob an den Intervallgrenzen lokale Maxima oder Minima vorliegen. Bestimme dazu den Funktionswert an den Intervallgrenzen und überprüfe, ob die erste Ableitung an den Intervallgrenzen größer oder kleiner als Null ist:
    • linker Rand: f'(x)<0, Randmaximum
    • linker Rand: f'(x)>0, Randminimum
    • rechter Rand: f'(x)<0, Randminimum
    • rechter Rand: f'(x)>0, Randmaximum

    Bestimmung des globalen Maximums und Minimums:

    1. Der größte Wert der lokalen Maxima und Randmaxima wird als globales Maximum bezeichnet.
    2. Der kleinste Wert der lokalen Minima und Randminima wird als globales Minimum bezeichnet.
    698

Bestimme alle lokalen und globalen Extrema der Funktion f. Gib Brüche in der Form a/b, Potenzen in der Form a^b ein. Fülle leer bleibende Felder mit "!" auf.

f
 
x
=
2x
3
+
3x
2
36x
Definitionsmenge IDf
=
[-4;5]
Lokale Minima (nach aufsteigenden x-Koordinaten sortiert):
f
 
=
f
 
=
Lokale Maxima (nach aufsteigenden x-Koordinaten sortiert):
f
 
=
f
 
=
Globales Minimum:
f
 
=
Globales Maximum:
f
 
=
  • Nebenrechnung

Zugriff ab Level 2 nur mit Benutzerkonto

Erstelle jetzt ein kostenloses Benutzerkonto. Damit hast du bei all unseren Aufgaben kostenlos Zugriff auf den 1. und 2. Level.
Benutzerkonto erstellen

Tipp

Wenn du Mathegym ohne Vollzugang weiter erkunden möchtest, kannst du entweder einen anderen Aufgabentyp wählen. Oder ein paar ausgewählte Schritt-für-Schritt-Aufgaben lösen, die wir für dich zusammengestellt haben.

Tipp: Wähle deinen Lehrplan, und wir zeigen dir genau die Aufgaben an, die für deine Schule vorgesehen sind.
Lernvideo
Anwendung der Ableitung (Teil 1)
Lernvideo
Anwendung der Ableitung (Teil 2)
Lernvideo
Anwendung der Ableitung (Teil 3)

Ist f in einer Umgebung von x0 differenzierbar und besitzt Gf an der Stelle x0 eine waagrechte Tangente, d.h. also f ´ (x0) = 0, so befindet sich dort entweder ein Hoch-, ein Tief- oder ein Terrassenpunkt. Was genau, verrät der Vorzeichenverlauf von f ´:
  • "−,0,+" bedeutet für Gf "fallend,waagrecht,steigend", also Tiefpunkt (relatives Minimum von f)
  • "+,0,−" bedeutet für Gf "steigend,waagrecht,fallend", also Hochpunkt (relatives Maximum von f)
  • "−,0,−" bedeutet für Gf "fallend,waagrecht,fallend", also Terrassenpunkt
  • "+,0,+" bedeutet für Gf "steigend,waagrecht,steigend", also ebenfalls Terrassenpunkt

Die Ableitung f´ einer differenzierbaren Funktion f liefert für jede definierte Stelle x die lokale Änderungsrate (= Steigung des Graphen von f an dieser Stelle). Insbesondere zeigt das Vorzeichen von f ´ an, ob f im betrachteten Intervall zunimmt oder abnimmt:

f´(x) f bzw. Gf
> 0 streng monoton zunehmend bzw. wachsend
< 0 streng monoton abnehmend bzw. fallend
= 0 waagrechte Tangente
Beispiel
Bestimme die Monotonieintervalle der ganzrationalen Funktion f aufgrund der gegebenen ersten Ableitung.
f '
 
x
=
1
3
·
x
3
·
x
+
5

Bestimmung der lokalen Maxima und Minima einer Funktion:

  1. Bestimme die Nullstellen der ersten Ableitung der Funktion.
  2. Überprüfe mithilfe des Vorzeichenwechsel-Kriteriums, ob im Graph ein Hoch- oder Tiefpunkt vorliegt.

Randextrema:

Untersuche, ob an den Intervallgrenzen lokale Maxima oder Minima vorliegen. Bestimme dazu den Funktionswert an den Intervallgrenzen und überprüfe, ob die erste Ableitung an den Intervallgrenzen größer oder kleiner als Null ist:
  • linker Rand: f'(x)<0, Randmaximum
  • linker Rand: f'(x)>0, Randminimum
  • rechter Rand: f'(x)<0, Randminimum
  • rechter Rand: f'(x)>0, Randmaximum

Bestimmung des globalen Maximums und Minimums:

  1. Der größte Wert der lokalen Maxima und Randmaxima wird als globales Maximum bezeichnet.
  2. Der kleinste Wert der lokalen Minima und Randminima wird als globales Minimum bezeichnet.
698

Nicht differenzierbar an der Stelle x0 kann z.B. bedeuten, dass der Graph einen Knick aufweist (blau) oder an der Stelle x0 überhaupt nicht definiert ist (rot), wie hier für x0 = -3 illustriert. Im Fall "blau" existieren aber die einseitigen Grenzwerte des Differenzialquotienten ("einseitige Tangentensteigungen"), nämlich 0 (linksseitig) und -3/2 (rechtsseitig).