Konstruiere (mit Zirkel und Lineal) ein rechtwinkliges Dreieck ABC mit den vorgegebenen Eigenschaften. Miss dann die gefragte Größe und kreuze richtig an.

  • Gegeben: Hypotenuse c = 7 cm, a = 3 cm
    Die Seite [AC] hat dann gerundet die Länge
    6,3 cm
    6,5 cm
    6,7 cm
    6,9 cm
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.

Tipp: Wähle deinen Lehrplan, und wir zeigen dir genau die Aufgaben an, die für deine Schule vorgesehen sind.
Lernvideo

Rechtwinklige Dreiecke - Satz des Thales (Teil 1)

Lernvideo

Rechtwinklige Dreiecke - Satz des Thales (Teil 2)


Satz des Thales:
  • Liegen A, B und C auf einem Kreis und geht AB durch den Mittelpunkt, so ist das Dreieck ABC bei C rechtwinklig. Man spricht vom "Thaleskreis" über AB.
  • Umgekehrt gilt: ist das Dreieck ABC bei C rechtwinklig, so liegt C auf dem Thaleskreis über AB.
Beispiel 1
Welche der folgenden Dreiecke sind rechtwinklig?
graphik graphik graphik
Beispiel 2
Ermittle durch Konstruktion alle Punkte, von denen aus die beiden Strecken a und b unter einem rechten Winkel erscheinen.
graphik
Satz des Thales:
  • Liegen A, B und C auf einem Kreis und geht [AB] durch den Mittelpunkt, so ist das Dreieck ABC bei C rechtwinklig. Man spricht vom "Thaleskreis" über [AB].
  • Umgekehrt gilt: ist das Dreieck ABC bei C rechtwinklig, so liegt C auf dem Thaleskreis über [AB].
Beispiel 1
Welche der folgenden Dreiecke sind rechtwinklig?
graphik
 
     
 
graphik
 
     
 
graphik
Beispiel 2
Ermittle durch Konstruktion alle Punkte, von denen aus die beiden Strecken a und b unter einem rechten Winkel erscheinen.
graphik