Konstruiere wie beschrieben, gib dann als Kontrolle die geforderte Länge an. Ergebnis(se) mit 1 Dezimalstelle(n) Genauigkeit angeben - geringe Abweichungen vom richtigen Ergebnis werden toleriert!

  • Zeichne eine Strecke [BC] der Länge 5 cm. Ergänze diese zu einem Dreieck ABC mit b = 4 cm und Umkreisradius r = 3,5 cm.
    c ≈
     
    cm
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.

Tipp: Wähle deinen Lehrplan, und wir zeigen dir genau die Aufgaben an, die für deine Schule vorgesehen sind.
Die Punkte der Winkelhalbierenden besitzen die Eigenschaft, dass sie zu beiden Schenkeln denselben Abstand haben. Daher gilt folgender Satz:

Die drei Winkelhalbierenden eines jeden Dreiecks schneiden sich in einem Punkt. Dieser Punkt hat von allen drei Seiten denselben Abstand, ist also der Mittelpunkt des Inkreises.

Beispiel
Gegeben ist das folgende Dreieck. Konstruiere den Inkreis.
graphik
Jeder Punkt auf der Mittelsenkrechten einer Strecke hat zu beiden Endpunkten der Strecke dieselbe Entfernung. Daher gilt folgender Satz:

Die drei Mittelsenkrechten eines jeden Dreiecks schneiden sich in einem Punkt. Dieser Punkt ist von allen drei Ecken gleich weit entfernt, ist also der Mittelpunkt des Umkreises.

Beispiel
Gegeben ist das folgende Dreieck. Konstruiere den Umkreis.
graphik