Du bist nicht angemeldet!
Hast du bereits ein Benutzer­konto? Dann logge dich ein, bevor du mit Üben beginnst.
Login
Hilfe
  • Allgemeine Hilfe zu diesem Level
    Vergleiche das Flächenstück über der x-Achse mit dem Flächenstück unter der x-Achse.
  • Das bestimmte Integral mit der Integrandenfunktion f und den Integrationsgrenzen a und b kann als FlächenBILANZ gedeutet werden: Man betrachte die Fläche zwischen Gf und der x-Achse im Intervall [a; b]. Teilflächen oberhalb der x-Achse gehen positiv, Teilflächen unterhalb der x-Achse negativ in die Bilanz ein.

Entscheide graphisch, ob "<", ">" oder "=" einzusetzen ist.

graphik
0
4
f
x
 
dx
 
 
0
 
     
 
6
0
f
x
 
dx
 
 
0
 
     
 
6
4
f
x
 
dx
 
 
0
  • Nebenrechnung

Tipp: Wähle deinen Lehrplan, und wir zeigen dir genau die Aufgaben an, die für deine Schule vorgesehen sind.

Das bestimmte Integral mit der Integrandenfunktion f und den Integrationsgrenzen a und b kann als FlächenBILANZ gedeutet werden: Man betrachte die Fläche zwischen Gf und der x-Achse im Intervall [a; b]. Teilflächen oberhalb der x-Achse gehen positiv, Teilflächen unterhalb der x-Achse negativ in die Bilanz ein.
Integriert man f(t) von a bis x (d.h. die obere Grenze ist variabel), so erhält man eine Integralfunktion Ia die jedem Wert x (= obere Grenze) das entsprechende Integral (Flächenbilanz) zuordnet. Ia besitzt im Allgemeinen folgende Eigenschaften:
  • mindestens eine Nullstelle x = a (weil das Integral von a bis a immer 0 ist)
  • sie ist Stammfunktion von f (Hauptsatz der Differential- und Integralrechnung)
Beispiel
graphik
I(x)
=
x
0
f
 
t
 
dt
Welche Aussage ist richtig, welche falsch?
I ist im Intervall [3; ∞[ streng monoton zunehmend.
I ist im Intervall [0; 2] streng monoton fallend.
I ist im Intervall [0; 2] nicht negativ.
I hat die stärkste Zunahme bei x = 2.
I besitzt ein relatives Maximum bei x = 1.
Die Fläche A zwischen dem Graphen einer positiven Funktion und der x-Achse in einem Intervall [a;b] kann durch Unter- und Obersumme (Un bzw. On) abgeschätzt werden (Streifenmethode).
  • Die Untersumme setzt sich aus n gleichbreiten, auf der x-Achse nebeneinander stehenden Rechtecksflächen (Streifen) zusammen, die möglichst hoch sind, den Graph aber niemals überragen.
  • Die Streifen der Obersumme sind möglichst niedrig, aber nie unterhalb des Graphen.
  • Die Breite der Streifen beträgt in beiden Fällen (b − a)/n.
Damit lässt sich abschätzen:

Un ≤ A ≤ On

Beispiel
Schätze mit Hilfe der Streifenmethode (n=6) ab:
3
0
2
x
 
dx