Hilfe
  • Allgemeine Hilfe zu diesem Level
    Multipliziere die x- und die y-Koordinate des Urvektors mit dem Streckungsfaktor k.
  • Streckt man einen Vektor durch zentrische Streckung mit dem Streckungsfaktor k, dann erhält man die Koordinaten des Bildvektors, indem man die Koordinaten des Urvektors jeweils mit k multipliziert. Es gilt:
    • Der Bildvektor ist |k|-mal so lang wie der Urvektor
    • k>0: Ur- und Bildvektor haben die gleiche Richtung
    • k<0: Ur- und Bildvektor haben gegensätzliche Richtungen
    • Bild- und Urvektor sind immer parallel zueinander (oder identisch)

Berechne den Bildvektor.

  • v
    =
    5
    2
    k
    =
    1,5
    v'
    =
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.

Tipp: Wähle deinen Lehrplan, und wir zeigen dir genau die Aufgaben an, die für deine Schule vorgesehen sind.
Streckt man einen Vektor durch zentrische Streckung mit dem Streckungsfaktor k, dann erhält man die Koordinaten des Bildvektors, indem man die Koordinaten des Urvektors jeweils mit k multipliziert. Es gilt:
  • Der Bildvektor ist |k|-mal so lang wie der Urvektor
  • k>0: Ur- und Bildvektor haben die gleiche Richtung
  • k<0: Ur- und Bildvektor haben gegensätzliche Richtungen
  • Bild- und Urvektor sind immer parallel zueinander (oder identisch)
Beispiel
AB
=
2
1
 soll mit
a) 
k
=
0,5
b) 
k
=
2
 
zentrisch gestreckt werden. Bestimme jeweils den Bildvektor 
A'B'
 und beschreibe sein Aussehen im Vergleich zum Urvektor.

Zentrische Streckung

Die Zentrische Streckung ist eine Ähnlichkeitsabbildung. Eine Figur wird im gegebenen Verhältnis vergrößert oder verkleinert. Dabei gilt:

  • Alle Streckenpaare von Ursprungs-Figur und Bild sind jeweils parallel.
  • Streckzentrum, Punkt und Bildpunkt liegen auf einer Geraden (hilfreich für die Konstruktion!).
  • Die Form der Figur verändert sich nicht, insbesondere bleiben alle Winkel gleich groß.
  • Der Streckfaktor gibt das Maß der Vergrößerung/Verkleinerung an und berechnet sich als Quotient aus Bildstreckenlänge und Ausgangsstreckenlänge, z.B. |k| = ZA' : ZA.

Was uns der Streckfaktor k sagt...:

  • k positiv ⇒ Figur und Bild liegen auf der selben Seite des Streckzentrums.
  • k negativ ⇒ Figur und Bild liegen auf unterschiedlichen Seiten des Streckzentrums.
  • |k| > 1 ⇒ Bild ist vergrößert.
  • |k| < 1 ⇒ Bild ist verkleinert.
  • Bildstrecke ist |k| - fach so lang wie die Ursprungsstrecke.
  • Flächeninhalt des Bildes ist k2 so groß wie Flächeninhalt der Ausgangsfigur.

Beispiel 1
Die blaue Figur ist aus der roten Figur durch eine zentrische Streckung entstanden. Zeichne die Figuren in ein Koordinatensystem und ermittle das Streckzentrum Z und den Streckfaktor k.
graphik
Z
 
?
 
|
 
?
k
=
?
Beispiel 2
Strecke das Viereck ABCD am Streckzentrum Z mit Streckfaktor k.
A
 
1
 
|
 
0
B
 
3
 
|
 
1
C
 
2
 
|
 
1
D
 
1
 
|
 
4
Streckzentrum:
Z
 
2
 
|
 
2
Streckfaktor:
k
=
2
Gib die Koordinaten der gestreckten Figur an.
A'
 
?
 
|
 
?
B'
 
?
 
|
 
?
C'
 
?
 
|
 
?
D'
 
?
 
|
 
?

Zentrische Streckung

Die Zentrische Streckung ist eine Ähnlichkeitsabbildung. Eine Figur wird im gegebenen Verhältnis vergrößert oder verkleinert (oder bleibt gleich). Dabei gilt:

  • Alle Streckenpaare von Urfigur und Bildfigur sind jeweils parallel (oder identisch).
  • Streckungszentrum Z, Urpunkt und Bildpunkt liegen auf einer Geraden (hilfreich für die Konstruktion!).
  • Die Form der Figur verändert sich nicht, insbesondere bleiben alle Winkelmaße gleich groß.
  • Der Streckungsfaktor k gibt das Maß der Vergrößerung/Verkleinerung an und berechnet sich als Quotient aus Bildstreckenlänge und Ausgangsstreckenlänge, z.B. |k |=| ZA'| : |ZA|.

Was uns der Streckfaktor k sagt...:

  • k positiv ⇒ Urfigur und Bildfigur liegen auf derselben Seite von Z.
  • k negativ ⇒ Urfigur und Bildfigur liegen auf unterschiedlichen Seiten von Z.
  • |k| > 1 ⇒ Bildfigur ist vergrößert.
  • |k| < 1 ⇒ Bildfigur ist verkleinert.
  • Bildstrecke ist |k| - fach so lang wie die Ursprungsstrecke.
  • Flächeninhalt der Bildfigur ist k2 so groß wie Flächeninhalt der Urfigur.

Beispiel 1
Strecke das Viereck ABCD am Streckungszentrum Z mit Streckungsfaktor k.
A
 
1
 
|
 
0
B
 
3
 
|
 
1
C
 
2
 
|
 
1
D
 
1
 
|
 
4
Streckungszentrum:
Z
 
2
 
|
 
2
Streckfaktor:
k=2.
Gib die Koordinaten der gestreckten Figur an.
Beispiel 2
Die blaue Figur ist aus der roten Figur durch eine zentrische Streckung entstanden. Zeichne die Figuren in ein Koordinatensystem und ermittle das Streckungszentrum Z und den Streckungsfaktor k.
graphik
Z
 
?
 
|
 
?
.
k=?
Zentrische Streckung mit Zentrum Z: Um den Streckungsfaktor k, den Punkt P oder den Bildpunkt P' zu ermitteln, gehst du im Prinzip immer gleich vor:
  • Bilde den Verbindungsvektor von Z und P', ebenso den von Z und P
  • Der erste Vektor ist gleich "k mal" der zweite (Gleichung)
  • Die Vektorgleichung kann jetzt in zwei Gleichungen aufgespaltet werden
  • Schließlich kann nach k oder den gesuchten Koordinaten aufgelöst werden
Beispiel 1
Beispiel Streckungsfaktor:
Z(2|4), P(1|1), P'(5|13) bestimme den Streckungsfaktor 
k
.
Beispiel 2
Beispiel Bildpunkt:
Z(-1|1)
k
=
4
, P(2|-3), bestimme den Bildpunkt P'(x'|y').
Beispiel 3
Beispiel Urpunkt:
Z(-3|1)
k
=
2
, P'(5|-4), bestimme den Urpunkt P(x|y).
Mit dem Parameterverfahren Geraden und Parabeln zentrisch strecken:
  • Lautet die Geradengleichung z.B. y=2x+3, so haben alle Punkte P auf g die Koordinaten P(x|2x+3)
  • Bestimme jetzt P'(x'|y') mit derselben Methode, mit der sich Bildpunkte bei gegebenem Urpunkt bestimmen lassen
  • Nach dem Lösen des Gleichungssystems erhältst du eine Gleichung der Art y'=...x'..., das ist die Gleichung der Bildgeraden
Beispiel 1
Die Parabel 
p: y
=
x
2
1
 soll zentrisch gestreckt werden mit Z(1|1) und 
k
=
2
. Wie lautet die Gleichung der Bildparabel 
p'
?
Beispiel 2
Die Gerade 
g: y
=
2x
+
1
 soll zentrisch gestreckt werden mit Z(5|5) und 
k
=
0,5
. Wie lautet die Gleichung der Bildgeraden 
g'
?