Hilfe
  • Allgemeine Hilfe zu diesem Level
    Multipliziere die x- und die y-Koordinate des Urvektors mit dem Streckungsfaktor k.
  • Streckt man einen Vektor durch zentrische Streckung mit dem Streckungsfaktor k, dann gilt:

Berechne den Bildvektor.

  • v
    =
    5
    2
    k
    =
    1,5
    v'
    =
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.

Tipp: Wähle deinen Lehrplan, und wir zeigen dir genau die Aufgaben an, die für deine Schule vorgesehen sind.
Streckt man einen Vektor durch zentrische Streckung mit dem Streckungsfaktor k, dann gilt:
Beispiel
A'B'
=
k
·
AB
wobei 
AB
 der Urvektor
A'B'
 der Bildvektor und k eine reelle Zahl ist. Der Bildvektor ist |k|-mal so lang wie der Urvektor. Weiter ist für k ungleich null:
A'B'
=
k
·
AB
  • k>0: Ur- und Bildvektor haben die gleiche Richtung
  • k<0: Ur- und Bildvektor haben gegensätzliche Richtungen
Bild- und Urvektor sind immer parallel zueinander (oder identisch).

Beispiel:
AB
=
2
1
soll mit 
k
=
0,5
 zentrisch gestreckt werden. Bestimme den Bildvektor 
A'B'
.
Urpunkte, Bildpunkte und den Streckungsfaktor einer zentrischen Streckung mit Vektoren berechnen.
Beispiel 1
Beispiel Streckungsfaktor:
Z(2|4), P(1|1), P'(5|13) bestimme den Streckungsfaktor 
k
.
Beispiel 2
Beispiel Bildpunkt:
Z(-1|1)
k
=
4
, P(2|-3), bestimme den Bildpunkt P'(x'|y').
Beispiel 3
Beispiel Urpunkt:
Z(-3|1)
k
=
2
, P'(5|-4), bestimme den Urpunkt P(x|y).

Zentrische Streckung

Die Zentrische Streckung ist eine Ähnlichkeitsabbildung. Eine Figur wird im gegebenen Verhältnis vergrößert oder verkleinert. Dabei gilt:

  • Alle Streckenpaare von Ursprungs-Figur und Bild sind jeweils parallel.
  • Streckzentrum, Punkt und Bildpunkt liegen auf einer Geraden (hilfreich für die Konstruktion!).
  • Die Form der Figur verändert sich nicht, insbesondere bleiben alle Winkel gleich groß.
  • Der Streckfaktor gibt das Maß der Vergrößerung/Verkleinerung an und berechnet sich als Quotient aus Bildstreckenlänge und Ausgangsstreckenlänge, z.B. |k| = ZA' : ZA.

Was uns der Streckfaktor k sagt...:

  • k positiv ⇒ Figur und Bild liegen auf der selben Seite des Streckzentrums.
  • k negativ ⇒ Figur und Bild liegen auf unterschiedlichen Seiten des Streckzentrums.
  • |k| > 1 ⇒ Bild ist vergrößert.
  • |k| < 1 ⇒ Bild ist verkleinert.
  • Bildstrecke ist |k| - fach so lang wie die Ursprungsstrecke.
  • Flächeninhalt des Bildes ist k2 so groß wie Flächeninhalt der Ausgangsfigur.

Beispiel 1
Die blaue Figur ist aus der roten Figur durch eine zentrische Streckung entstanden. Zeichne die Figuren in ein Koordinatensystem und ermittle das Streckzentrum Z und den Streckfaktor k.
graphik
Z
 
?
 
|
 
?
k
=
?
Beispiel 2
Strecke das Viereck ABCD am Streckzentrum Z mit Streckfaktor k.
A
 
1
 
|
 
0
B
 
3
 
|
 
1
C
 
2
 
|
 
1
D
 
1
 
|
 
4
Streckzentrum:
Z
 
2
 
|
 
2
Streckfaktor:
k
=
2
Gib die Koordinaten der gestreckten Figur an.
A'
 
?
 
|
 
?
B'
 
?
 
|
 
?
C'
 
?
 
|
 
?
D'
 
?
 
|
 
?

Zentrische Streckung

Die Zentrische Streckung ist eine Ähnlichkeitsabbildung. Eine Figur wird im gegebenen Verhältnis vergrößert oder verkleinert (oder bleibt gleich). Dabei gilt:

  • Alle Streckenpaare von Urfigur und Bildfigur sind jeweils parallel (oder identisch).
  • Streckungszentrum Z, Urpunkt und Bildpunkt liegen auf einer Geraden (hilfreich für die Konstruktion!).
  • Die Form der Figur verändert sich nicht, insbesondere bleiben alle Winkelmaße gleich groß.
  • Der Streckungsfaktor k gibt das Maß der Vergrößerung/Verkleinerung an und berechnet sich als Quotient aus Bildstreckenlänge und Ausgangsstreckenlänge, z.B. |k |= |ZA'| : |ZA|.

Was uns der Streckfaktor k sagt...:

  • k positiv ⇒ Urfigur und Bildfigur liegen auf derselben Seite von Z.
  • k negativ ⇒ Urfigur und Bildfigur liegen auf unterschiedlichen Seiten von Z.
  • |k| > 1 ⇒ Bildfigur ist vergrößert.
  • |k| < 1 ⇒ Bildfigur ist verkleinert.
  • Bildstrecke ist |k| - fach so lang wie die Ursprungsstrecke.
  • Flächeninhalt der Bildfigur ist k2 so groß wie Flächeninhalt der Urfigur.

Beispiel 1
Die blaue Figur ist aus der roten Figur durch eine zentrische Streckung entstanden. Zeichne die Figuren in ein Koordinatensystem und ermittle das Streckungszentrum Z und den Streckungsfaktor k.
graphik
Z
 
?
 
|
 
?
.
k=?
Beispiel 2
Strecke das Viereck ABCD am Streckungszentrum Z mit Streckungsfaktor k.
A
 
1
 
|
 
0
B
 
3
 
|
 
1
C
 
2
 
|
 
1
D
 
1
 
|
 
4
Streckungszentrum:
Z
 
2
 
|
 
2
Streckfaktor:
k=2.
Gib die Koordinaten der gestreckten Figur an.
Mit dem Parameterverfahren Geraden und Parabeln zentrisch strecken.
Beispiel 1
Die Parabel 
p: y
=
x
2
1
 soll zentrisch gestreckt werden mit Z(1|1) und 
k
=
2
. Wie lautet die Gleichung der Bildparabel 
p'
?
Beispiel 2
Die Gerade 
g: y
=
2x
+
1
 soll zentrisch gestreckt werden mit Z(5|5) und 
k
=
0,5
. Wie lautet die Gleichung der Bildgeraden 
g'
?