Aufgaben/Videos
Mathe nach Lehrplan
Mathe nach Schulbuch
Physik
Latein
Preise
Hilfe
Infos
Infos für Schüler
Infos für Eltern
Infos für Lehrer & Schulen
Teilnehmende Schulen
Auszeichnungen
Erfahrungsberichte
Blog
Unser Team
Kontakt
Registrieren
Login
Potenzfunktionen - Matheaufgaben
Funktionen mit Funktionsterm a·x
n
; Bestimmung der Parameter
Aufgaben
Aufgaben rechnen
Stoff
Stoff ansehen
Du bist nicht angemeldet!
Hast du bereits ein Benutzerkonto? Dann logge dich ein, bevor du mit Üben beginnst.
Login
Hilfe
Allgemeine Hilfe zu diesem Level
Potenzfunktionen sind Funktionen der Form:
y = ax
n
Spezialfälle:
n = 0 (konstante Funktion): y = a, Graph: waagerechte Gerade
n = 1 (lineare Funktion): y = ax, Graph: Ursprungsgerade mit Steigung a
n = 2 (quadratische Funktion): y = ax
2
, Graph: gestauchte / gestreckte Parabel mit Scheitel S ( 0 | 0 )
Die Graphen von Potenzfunktionen haben charakteristische Eigenschaften, die oft davon abhängen, ob die Hochzahl n gerade oder ungerade ist.
Wertemenge:
n gerade: keine negativen Zahlen
n ungerade: alle reellen Zahlen
Symmetrie:
n gerade: Achsensymmetrie zur y-Achse
n ungerade: Punktsymmetrie zum Ursprung
Vorfaktor a
Der Wert des Parameters a ist der Funktionswert an der Stelle x = 1.
a>0: Streckung / Stauchung in y-Richtung
a<0: zusätzliche Spiegelung an der x-Achse
Kreuze alle Funktionsgleichungen an, auf die die Aussage zutrifft.
Die dazugehörigen Funktionswerte sind nicht positiv.
y
=
−
x
4
y
=
3x
2
y
=
−
10x
3
y
=
−
3x
2
y
=
−
0,5x
4
y
=
0,2x
5
Nebenrechung
√
Leeren
Zugriff ab Level 2 nur mit Benutzerkonto
Erstelle jetzt ein kostenloses Benutzerkonto. Damit hast du bei all unseren Aufgaben kostenlos Zugriff auf den 1. und 2. Level.
Benutzerkonto erstellen
Tipp
Wenn du Mathegym ohne Vollzugang weiter erkunden möchtest, kannst du entweder einen
anderen Aufgabentyp
wählen. Oder ein paar ausgewählte
Schritt-für-Schritt-Aufgaben
lösen, die wir für dich zusammengestellt haben.
Lehrplan wählen
Tipp: Wähle deinen Lehrplan, und wir zeigen dir genau die Aufgaben an, die für deine Schule vorgesehen sind.
Stoff zum Thema
Bei einer Potenzfunktion mit der Funktionsgleichung y=ax
n
entscheidet die Hochzahl n zusammen mit dem Vorfaktor a, von wo der Graph kommt und wohin er geht:
n ungerade, a positiv (z.B. 5x³): Graph verläuft von links unten nach rechts oben.
n ungerade, a negativ (z.B. -2x): Graph verläuft von links oben nach rechts unten.
n gerade, a positiv (z.B. ½x²): Graph verläuft von links oben nach rechts oben.
n gerade, a negativ (z.B. -x²): Graph verläuft von links unten nach rechts unten.
Beispiel
Wie verläuft der Graph?
y
=
4x
7
Potenzfunktionen sind Funktionen der Form:
y = ax
n
Spezialfälle:
n = 0 (konstante Funktion): y = a, Graph: waagerechte Gerade
n = 1 (lineare Funktion): y = ax, Graph: Ursprungsgerade mit Steigung a
n = 2 (quadratische Funktion): y = ax
2
, Graph: gestauchte / gestreckte Parabel mit Scheitel S ( 0 | 0 )
Die Graphen von Potenzfunktionen haben charakteristische Eigenschaften, die oft davon abhängen, ob die Hochzahl n gerade oder ungerade ist.
Wertemenge:
n gerade: keine negativen Zahlen
n ungerade: alle reellen Zahlen
Symmetrie:
n gerade: Achsensymmetrie zur y-Achse
n ungerade: Punktsymmetrie zum Ursprung
Vorfaktor a
Der Wert des Parameters a ist der Funktionswert an der Stelle x = 1.
a>0: Streckung / Stauchung in y-Richtung
a<0: zusätzliche Spiegelung an der x-Achse
Beispiel
Gib die zugehörige Funktionsgleichung an
y
=
?x
?
Wenn von einem Punkt auf dem Schaubild nur die x-Koordinate bekannt ist, erhält man die y-Koordinate, indem man die x-Koordinate in den Funktionsterm einsetzt und den Wert des Funktionsterms berechnet. Das Ergebnis ist die y-Koordinate.
Wenn von einem Punkt auf dem Schaubild nur die y-Koordinate bekannt ist, erhält man die x-Koordinate, indem man den Funktionsterm gleich der y-Koordinate setzt und aus der entstehenden Gleichung x bestimmt. Das Ergebnis ist die x-Koordinate.
Titel
×
...
Schließen
Speichern
Abbrechen