Aufgaben/Videos
Mathe nach Lehrplan
Mathe nach Schulbuch
Physik
Latein
Preise
Hilfe
Infos
Infos für Schüler
Infos für Eltern
Infos für Lehrer & Schulen
Teilnehmende Schulen
Auszeichnungen
Erfahrungsberichte
Blog
Unser Team
Kontakt
Registrieren
Login
Kongruenz - Kongruenzsätze - Matheaufgaben
Kongruente Figuren erkennen, Dreiecke daraufhin überprüfen, ob sie äquivalent sind bzw. eindeutig definiert; eindeutige/mehrdeutige Konstruktion von Dreiecken aufgrund vorgegebener Größen - Lehrplan Baden-Württemberg, Gymnasium, 7. Klasse/8. Klasse
Aufgaben
Aufgaben rechnen
Stoff
Stoff ansehen (+Video)
Du bist nicht angemeldet!
Hast du bereits ein Benutzerkonto? Dann logge dich ein, bevor du mit Üben beginnst.
Login
Hilfe
Allgemeine Hilfe zu diesem Level
Zwei Figuren heißen
kongruent
, wenn sie deckungsgleich sind. Praktisch betrachtet heißt das, man kann sie so übereinander legen, dass an keiner Stelle etwas überlappt.
Kreuze alle Figuren an, die kongruent sind.
Kongruent sind:
a
b
c
d
e
Nebenrechung
√
Leeren
Hilfe zu dieser Aufgabe
Nebenrechung
Stoff zum Thema (+Video)
Lernvideo
Kongruenz von Dreiecken
Zwei Figuren heißen
kongruent
, wenn sie deckungsgleich sind. Praktisch betrachtet heißt das, man kann sie so übereinander legen, dass an keiner Stelle etwas überlappt.
Die Kongruenz zweier Dreiecke erkennt man nicht immer sofort. Auf sein Augenmaß darf man sich außerdem auch nicht verlassen. Am sichersten lässt sich die Kongruenz zweier Dreiecke mit Hilfe der sog. Kongruenzsätze feststellen. Zwei Dreiecke sind demnach kongruent, wenn
sie in allen drei Seiten übereinstimmen (SSS).
sie in einer Seite und zwei zu dieser Seite gleich liegenden Winkeln übereinstimmen (WSW bzw. SWW).
sie in zwei Seiten und dem eingeschlossenen Winkel übereinstimmen (SWS).
sie in zwei Seiten und dem Winkel, der der größeren Seite gegenüberliegt, übereinstimmen (SsW).
Ein Dreieck wird eindeutig festgelegt durch die Angabe (vergleiche mit den Kongruenzsätzen)
aller drei Seitenlängen
einer Seitenlänge und zweier Winkel
zweier Seitenlängen sowie dem Zwischenwinkel
zweier Seitenlängen und dem Winkel, der der größeren Seite gegenüberliegt
Die Angabe von zwei Seiten und einem Winkel, welcher der kleineren der beiden Seiten gegenüberliegt, lässt mehrere Lösungen zu.
Titel
×
...
Schließen
Speichern
Abbrechen