Du bist nicht angemeldet!
Hast du bereits ein Benutzer­konto? Dann logge dich ein, bevor du mit Üben beginnst.
Login
Hilfe
  • Allgemeine Hilfe zu diesem Level
    Unterscheide zwischen
    • a · (b · c) = a · b · c   (A-Gesetz)
    • a · (b + c) = a · b + a · c   (D-Gesetz)

Vereinfache. Variablenpotenzen sind in der Form "a^n" anzugeben, evtl. auftretende Brüche/gemischte Zahlen in der Form "a/b", "-a/b" oder a b/c".

5s
·
r
·
7s
+
2r
·
1
3
+
s
·
r
s
:
2
=
  • Nebenrechnung

Zugriff ab Level 2 nur mit Benutzerkonto

Erstelle jetzt ein kostenloses Benutzerkonto. Damit hast du bei all unseren Aufgaben kostenlos Zugriff auf den 1. und 2. Level.
Benutzerkonto erstellen

Tipp

Wenn du Mathegym ohne Vollzugang weiter erkunden möchtest, kannst du entweder einen anderen Aufgabentyp wählen. Oder ein paar ausgewählte Schritt-für-Schritt-Aufgaben lösen, die wir für dich zusammengestellt haben.

Distributivgesetz:

a · (b + c ) = a · b + a · c    ("Klammer ausmultiplizieren")

(a + b ) : c = a : c + b : c

Statt + kann man auch − einsetzen, d.h. das Disriputivgesetz gilt für Summen wie auch für Differenzen, die mit einer Zahl multipliziert oder durch eine Zahl dividiert werden.

Beispiel 1
Multipliziere aus und gib gekürzt an:
2
9
·
3
5
6c
=
?
Beispiel 2
Multipliziere aus und gib gekürzt an:
1
3
·
2a
+
12b
+
3c
=
?
Beispiel 3
Multipliziere aus und gib gekürzt an:
5
3
 
ab
1
3
 
a
2
3b
·
6
5
=
?
Beim Multiplizieren zweier Summen muss jeder Summand der ersten Klammer mit jedem Summanden der zweiten Klammer multipliziert werden (ergibt sich aus dem Distributivgesetz):

(a + b) · (c + d) = ac + ad + bc + bd

Beispiel 1
Multipliziere aus und vereinfache:
2
5
 
uv
2
3
·
15u
2
+
1
uv
Beispiel 2
b
2
3
 
b
·
6a
·
a
30%
+
1
2
 
a
2
·
b
4ab
ab
2
Die Anzahl der Summanden, die sich nach dem Ausmultiplizieren mehrerer Summen ergibt, lässt sich ebenso leicht bestimmen wie die höchsten Variablenpotenzen:
  • Anzahl der Summanden: Nimm von jeder Klammer die Anzahl der Summanden und bilde das Produkt.
  • Höchste Potenz einer Variable: Nimm aus jeder Klammer die höchste Potenz dieser Variable und multipliziere diese Potenzen.
Beispiel
Wie viele Summanden ergeben sich nach dem Ausmultiplizieren und welche höchsten Variablenpotenzen?
x
+
2
y
2
·
2y
5
x
5x
2
+
1
3
·
x
+
1
·
y
3
Bei komplexeren Termen hilft meist die folgende Strategie weiter:
  1. Klammern auflösen/ausmultiplizieren
  2. gleichartige Terme durch Addieren/Subtrahieren zusammenfassen
Beispiel
Vereinfache:
3
2
9
 
v
2
3
1
3
·
6
v
·
2
Unterscheide zwischen
  • a · (b · c) = a · b · c   (A-Gesetz)
  • a · (b + c) = a · b + a · c   (D-Gesetz)
Beispiel
Vereinfache:
12,5%
·
s
:
5
4
+
1,8s
·
1
1
2
 
s
+
t
2
3t
·
s
:
6
·
2t