Du bist nicht angemeldet!
Hast du bereits ein Benutzer­konto? Dann logge dich ein, bevor du mit Üben beginnst.
Login
Hilfe
  • Allgemeine Hilfe zu diesem Level
  • Ein Gleichungssystem besteht aus mehreren Gleichungen mit einer oder mehreren Variablen. Grundsätzlich sind drei Fälle denkbar:
    • eine eindeutige Lösung
    • unendlich viele Lösungen
    • keine Lösung

Berechne im Kopf. Gib evtl. auftretende Brüche in der Form "a/b" bzw. "-a/b" an. Gib "!" an, falls es keine oder unendlich viele Lösungen des Gleichungssystems gibt.

3x
=
2
y
y
=
3
x
=
  • Nebenrechnung
Ein Gleichungssystem besteht aus mehreren Gleichungen mit einer oder mehreren Variablen. Grundsätzlich sind drei Fälle denkbar:
  • eine eindeutige Lösung
  • unendlich viele Lösungen
  • keine Lösung
Beispiel
Betrachte die folgenden drei Gleichungssysteme und bestimme jeweils, falls möglich, die Lösung(en).
-----------------------
x
=
1
y
=
x
2
-----------------------
x
+
y
=
2
2x
+
2y
=
4
-----------------------
x
+
y
=
2
x
+
y
=
1
-----------------------
Gleichungssysteme lassen sich z.B. mit Hilfe des Einsetzungsverfahrens oder des Additionsverfahrens lösen. Beide Verfahren laufen darauf hinaus, Gleichungen mit jeweils nur einer Unbekannten zu erhalten, nach der man dann auflösen kann.
Beispiel 1

Löse mit Hilfe des Einsetzungsverfahrens:

I: 2x + 3y = 5
II: 3y − x = 0,5
Beispiel 2
Löse mit Hilfe des Additionsverfahrens:
2x
+
3y
=
5
2y
3
=
x
Mischaufgaben können oft mit Hilfe zweier Gleichungen gelöst werden, bei der sich eine auf die Gesamtmengen bezieht.
Beispiel
Hochprozentige Essigsäure (Essigessenz) kann im Haushalt mit Wasser verdünnt werden um Speiseessig herzustellen. Wieviel 15%ige Essigessenz und wieviel Wasser sind zu vermischen, um 1 Liter Speiseessig mit einem Säureanteil von 6% herzustellen?

Den Schnittpunkt zweier Geraden ermittelt man, indem man ihre Funktionsterme gleichsetzt:

  1. Setze g(x) = h(x) und löse diese Gleichung nach x auf.
  2. Setze den ermittelten x-Wert in g(x) oder h(x) ein, so erhältst du den y-Wert des Schnittpunkts.

Spezialfall: Den Schnittpunkt einer Gerade g mit der x-Achse (y = 0) ermittelt man durch g(x) = 0.

Beispiel
Bestimme durch Rechnung den Schnittpunkt der beiden Geraden g und h mit folgenden Gleichungen:
g
:
y
=
2,1
x
3
 
          
 
h
:
y
=
4
9
 
x
+
0,9