Hilfe
  • a2 = a · a

TIPP Beispiel-Aufgabe: Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe. Klicke dazu auf "Hilfe zu diesem Aufgabentyp" unterhalb der Aufgabe.

Berechne ohne Taschenrechner (Brüche in der Form a/b).
Hinweis: Diese Aufgaben sind eine Wiederholung der Quadratzahlen als Vorübung für das Rechnen mit Wurzeln.

  • 16
    2
    =
    7
    2
    =
    40
    2
    =
    0,5
    2
    =
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.

a2 = a · a

Beispiel
Berechne:
5
2
=
?
80
2
=
?
0,3
2
=
?
4
2
=
?
Die Wurzel einer nicht negativen Zahl a ist diejenige nicht negative Zahl Zahl, die quadriert a ergibt, also

(√a)2 = a.

Die Zahl unter der Wurzel nennt man Radikand.

Laut dieser Definition gilt also: Weder der Radikand noch der Wert des Wurzelterms dürfen/können negativ sein!
Beispiel 1
0,0016
=
16
10000
=
4
100
2
=
4
100
=
0,04
Beispiel 2
3
6
25
=
81
25
=
9
5
2
=
9
5
Nach dem Distributivgesetz können gleiche Wurzeln (bzw. Vielfache davon) addiert und subtrahiert werden:

a√c + b√c = (a + b)√c

Achtung: √a + √b ≠ √(a+b)
Beispiel 1
5
·
10
9
·
10
=
?
Beispiel 2
Fasse zusammen:
2
 
3
3
 
2
+
3
2
 
2
Beispiel 3
Fasse zusammen:
18
3
+
5
 
2
6
 
32
Ein Produkt von Wurzeln lässt sich als Produkt unter einer Wurzel schreiben und umgekehrt. Sofern weder a noch b negativ sind, gilt also

√a · √b = √(a · b)

Ein Quotient von Wurzeln lässt sich als Quotient unter einer Wurzel schreiben und umgekehrt. Sofern weder a noch b negativ sind, gilt also

√a : √b = √(a : b)

Nach dem Distributivgesetz können gleiche Wurzeln (bzw. Vielfache davon) addiert und subtrahiert werden:

a√c + b√c = (a + b)√c

Achtung: √a + √b ≠ √(a+b)

Oft kann man teilweise die Wurzel ziehen. Sofern a nicht negativ ist, kann man den Faktor a² unabhängig vom Faktor b radizieren:

√(a² · b) = √(a²) · √b = a · √b

Beispiel 1
108
10
·
3
=
?
Beispiel 2
108
300
=
?
Beispiel 3
50
·
2
=
?
50
2
=
?
50
=
?
Beispiel 4
9
·
16
=
?
9
+
16
=
?
9
+
16
=
?
Distributivgesetz:

a · (b + c ) = a · b + a · c    ("Klammer ausmultiplizieren")

(a + b ) : c = a : c + b : c

Statt + kann man auch − einsetzen, d.h. das Distributivgesetz gilt für Summen wie auch für Differenzen, die mit einer Zahl multipliziert oder durch eine Zahl dividiert werden.

Beispiel 1
3
·
3
27
=
?
Beispiel 2
Vereinfache:
12
+
20
2
 
27
·
5
36
Beispiel 3
Vereinfache:
3
 
32
108
·
5
 
3
6
Ein Produkt von Wurzeln lässt sich als Produkt unter einer Wurzel schreiben und umgekehrt. Sofern weder a noch b negativ sind, gilt also

√a · √b = √(a · b)

Unter anderem ermöglicht diese Regel, Wurzeln teilweise zu radizieren. Sofern a nicht negativ ist, kann man den Faktor a² unabhängig vom Faktor b radizieren:

√(a² · b) = √(a²) · √b = a · √b

Beispiel 1
Radiziere teilweise:
720
=
?
Beispiel 2
Vereinfache:
3
 
45
·
18
=
?
Beachte beim Rechnen mit Variablen, dass (weil a auch negativ sein könnte)

√(a²) = | a |

Der Betragstrich ist nicht nötig, wenn a < 0 ausgeschlossen werden kann. Ist hingegen bekannt, dass a negativ ist, kann man statt des Betrags auch konkret schreiben

√(a²) = −a

Ob eine Variable unter der Wurzel positiv oder negativ ist, erschließt sich oft indirekt aus der Aufgabenstellung.

Beispiel 1
Gegeben ist der Term 
x
6
.
Welche Werte können für x eingesetzt werden und wie lautet der vereinfachte Term?
Beispiel 2
Vereinfache (x ≠ 0)
3
 
4x
2
y
:
12y
4

Die drei Binomischen Formeln (BF) lauten:

  1. (a + b)² = a² + 2ab + b²
  2. (a − b)² = a² − 2ab + b²
  3. (a + b) (a − b) = a² − b²
In dieser Richtung (links mit Klammer, rechts ohne) dienen die Formeln dazu, Klammern schneller auszumultiplizieren. Ohne Kenntnis der BF müsste man die Klammern auf herkömmlich Art ("jeder mit jedem") ausmultiplizieren.
Beispiel
Multipliziere.
6
 
x
+
2
 
y
2
=
?
a
3
3
 
b
2
=
?
d
+
2
 
3
·
d
2
 
3
=
?