Du bist nicht angemeldet!
Hast du bereits ein Benutzer­konto? Dann logge dich ein, bevor du mit Üben beginnst.
Login
Hilfe
  • Allgemeine Hilfe zu diesem Level
  • Um zwei Geraden g und h hinsichtlich ihrer Lage zueinander zu untersuchen, betrachtet man zunächst ihre Richtungsvektoren.
    • Sind diese linear abhängig, so sind g und h identisch oder parallel zueinander. Zur Unterscheidung prüft man, ob z.B. der Aufpunkt von g auf h liegt (wenn ja:identisch, ansonsten echt parallel).
    • Sind die Richtungsvektoren linear unabhängig, so setzt man beide Geraden gleich und betrachtet das entstehende Gleichungssystem (drei Gleichungen, zwei unbekannte Parameter). Lässt es sich eindeutig lösen, so schneiden sich g und h in einem Punkt S. Andernfalls (unlösbar) liegen g und h windschief zueinander.

Die Richtungsvektoren der Geraden g und h sind nicht parallel. Untersuche, ob die beiden Geraden sich schneiden oder windschief sind und bestimme gegebenenfalls den Schnittpunkt. (Falls sich die Geraden nicht schneiden, gib für alle Koordinaten "!" ein.)

g
:
X
=
4
1
9
+
t
·
3
2
3
 
     
 
h
:
X
=
11
3
4
+
t
·
5
2
4
Schnittpunkt:
 
P
 
 
|
 
 
|
 
  • Nebenrechnung

Zugriff ab Level 2 nur mit Benutzerkonto

Erstelle jetzt ein kostenloses Benutzerkonto. Damit hast du bei all unseren Aufgaben kostenlos Zugriff auf den 1. und 2. Level.
Benutzerkonto erstellen

Tipp

Wenn du Mathegym ohne Vollzugang weiter erkunden möchtest, kannst du entweder einen anderen Aufgabentyp wählen. Oder ein paar ausgewählte Schritt-für-Schritt-Aufgaben lösen, die wir für dich zusammengestellt haben.
Um zwei Geraden g und h hinsichtlich ihrer Lage zueinander zu untersuchen, betrachtet man zunächst ihre Richtungsvektoren.
  • Sind diese linear abhängig, so sind g und h identisch oder parallel zueinander. Zur Unterscheidung prüft man, ob z.B. der Aufpunkt von g auf h liegt (wenn ja:identisch, ansonsten echt parallel).
  • Sind die Richtungsvektoren linear unabhängig, so setzt man beide Geraden gleich und betrachtet das entstehende Gleichungssystem (drei Gleichungen, zwei unbekannte Parameter). Lässt es sich eindeutig lösen, so schneiden sich g und h in einem Punkt S. Andernfalls (unlösbar) liegen g und h windschief zueinander.
Beispiel
g
:
X
=
1
1
5
+
μ
·
3
4
2
 
     
 
h
:
X
=
1
3
2
+
μ
·
6
8
4
i
:
X
=
0
3
14
+
μ
·
1
2
1
 
     
 
k
:
X
=
2
3
7
+
μ
·
2
8
3
4
3
Untersuche, wie die Gerade g zu den anderen Geraden liegt.