Du bist nicht angemeldet!
Hast du bereits ein Benutzer­konto? Dann logge dich ein, bevor du mit Üben beginnst.
Login
Hilfe
  • Allgemeine Hilfe zu diesem Level
    Um den Grad anzugeben, schaut man auf die höchste x-Potenz (sofern der Term als Summe von x-Potenzen mit jeweiligem Koeffizient vorliegt).

    Liegt der Term faktorisiert vor, muss man pro Faktor die größte x-Potenz heranziehen. Es ist (für die Bestimmung des Grads) nicht erforderlich, alle Klammern auszumultiplizieren.

Gib den Grad der ganzrationalen Funktion an bzw. "!", wenn es sich um keine ganzrationale Funktion handelt.

f
 
x
=
x
+
1
·
2
x
2
ist vom Grad
  • Nebenrechnung

Lernvideo
Ganzrationale Funktionen (Teil 1)

Um den Grad anzugeben, schaut man auf die höchste x-Potenz (sofern der Term als Summe von x-Potenzen mit jeweiligem Koeffizient vorliegt).

Liegt der Term faktorisiert vor, muss man pro Faktor die größte x-Potenz heranziehen. Es ist (für die Bestimmung des Grads) nicht erforderlich, alle Klammern auszumultiplizieren.

Der Term f(x) einer ganzrationalen Funktion (synonym: Polynomfunktion) besteht aus einer Summe von x-Potenzen, denen reelle Faktoren vorangestellt sind, wie z.B.


½ x³ + 3x² − 5

Die höchste x-Potenz bestimmt den Grad, im Beispiel oben beträgt dieser 3. Die vor den x-Potenzen stehenden reellen Faktoren (½; 3; -5) nennt man Koeffizienten. Taucht eine x-Potenz gar nicht auf, so ist der entsprechende Koeffizient 0.

Beispiel
f(x)
=
4
7
x
2
+
2
 
x
4
Gib den Grad und die auftretenden Koeffizienten ai an (mit ai ist der Faktor vor xi gemeint)
Ein ganzrationaler Term kann evtl. in faktorisierter Form vorliegen, d.h. als Produkt von mehreren Teiltermen (jeder davon ebenfalls ganzrational). Um die übliche Darstellung zu erhalten (Summe von x-Potenzen mit jeweiligem Koeffizient), muss man die Klammern ausmultiplizieren. Dabei ist das Distributivgesetz ("jeder mit jedem") anzuwenden.
Bei einer ganzrationalen Funktion entscheidet die größte x-Potenz mitsamt ihrem Koeffizienten, von wo der Graph kommt und wohin er geht:
  • Exponent ungerade, Koeffizient positiv (z.B. 5x³): von links unten nach rechts oben
  • Exponent ungerade, Koeffizient negativ (z.B. -2x): von links oben nach rechts unten
  • Exponent gerade, Koeffizient positiv (z.B. ½x²): von links oben nach rechts oben
  • Exponent gerade, Koeffizient negativ (z.B. -x²): von links unten nach rechts unten
Bei einer ganzrationalen Funktion entscheiden die Summanden mit den niedrigsten x-Potenzen, wie sich die Funktion in der Nähe der y-Achse verhält.
Beispiel
Wie verhalten sich die Funktionen in der Umgebung der y-Achse?
f(x)
=
x
4
5x
2
+
1
2
 
x
2
 
      
 
g(x)
=
2x
5
x
4
x
2