Du bist nicht angemeldet!
Hast du bereits ein Benutzer­konto? Dann logge dich ein, bevor du mit Üben beginnst.
Login
Hilfe
  • Allgemeine Hilfe zu diesem Level
    Um die Steigung einer Ursprungsgeraden zu ermitteln, gehe wie folgt vor:
    1. Suche zwei Punkte auf der Geraden, deren Koordinaten sich gut ablesen lassen und betrachte das Steigungsdreieck zwischen diesen beiden Punkten.
    2. Bilde den Bruch aus der Höhe des Dreiecks im Zähler und der Breite des Dreiecks im Nenner und kürze diesen, falls möglich.
    3. Falls die Gerade fällt, schreibe noch ein Minus vor den oben ermittelten Bruch. Damit hast du die Steigung.

Welche Gleichung passt zum abgebildeten Graphen?

graphik
 
y
=
2
3
 
x
     
 
y
=
3
2
 
x
     
 
y
=
5
3
 
x
     
 
y
=
3
5
 
x
  • Nebenrechnung
Um die Steigung einer Ursprungsgeraden zu ermitteln, gehe wie folgt vor:
  1. Suche zwei Punkte auf der Geraden, deren Koordinaten sich gut ablesen lassen und betrachte das Steigungsdreieck zwischen diesen beiden Punkten.
  2. Bilde den Bruch aus der Höhe des Dreiecks im Zähler und der Breite des Dreiecks im Nenner und kürze diesen, falls möglich.
  3. Falls die Gerade fällt, schreibe noch ein Minus vor den oben ermittelten Bruch. Damit hast du die Steigung.
Wenn von einem Punkt auf der Geraden nur die x-Koordinate bekannt ist, erhält man die y-Koordinate, indem man die x-Koordinate in den Funktionsterm einsetzt und den Wert des Funktionsterms berechnet. Das Ergebnis ist die y-Koordinate.

Wenn von einem Punkt auf der Geraden nur die y-Koordinate bekannt ist, erhält man die x-Koordinate, indem man den Funktionsterm gleich der y-Koordinate setzt und die entstehende Gleichung nach x auflöst. Das Ergebnis ist die x-Koordinate.

Sind zwei Geraden g und h zueinander senkrecht (orthogonal), so erfüllen ihre Steigungen die Gleichung mg · mh = −1.

Am einfachsten erhält man die Steigung der zu g orthogonalen Geraden, indem man die Steigung von g als Bruch darstellt, diesen Bruch stürzt und das Vorzeichen ändert.

Um zu überprüfen, ob ein Punkt P(x | y) auf der Geraden liegt, setzt man den x-Wert in den Funktionsterm ein und berechnet den Termwert. Ist das Ergebnis der y-Wert des Punktes, dann liegt der Punkt auf der Geraden.