Hilfe
  • Lies die Höhe der Balken möglichst präzise (auf 0,001 genau) ab und bestimme damit den Erwartungswert.

Das Diagramm beschreibt die die Wahrscheinlichkeitsverteilung einer binomialverteilten Zufallsgröße X. Bestimme p. Ergebnis(se) falls erforderlich auf die 2. Dezimalstelle gerundet eingeben!

  • graphik
    (n = 5)
    p
     
     
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.

Bernoulli-Experimente und Bernoulli-Ketten:

Bernoulli-Experiment:
Zufallsversuch, bei dem genau zwei mögliche Ergebnisse interessieren, z.B.

  • "Erfolg -- Nichterfolg"
  • "Treffer -- Niete"
  • "0 -- 1".
  • Ist die Treffer-Wahrscheinlichkeit p, so ist die Nicht-Treffer-Wahrscheinlichkeit q = 1− p (Gegenereignis).

Bernoulli-Kette der Länge n:

  • Ein Bernoulli-Experiment wird n mal wiederholt, wobei die Durchführungen jeweils unabhängig voneinander sind.
  • Ein Pfad mit r Treffern hat die Wahrscheinlichkeit pr · qn-r, wobei p die Trefferwahrscheinlichkeit und q = 1 − p die Nicht-Trefferwahrscheinlichkeit ist.
  • In einer Bernoulli-Kette der Länge n gibt der Binomialkoeffizient "n über r" die Anzahl der Pfade mit genau r Treffern an.

Beispiel
Ein Würfel wird 4 Mal geworfen. Handelt es sich um ein Bernoulli-Experiment? Wenn ja, dann gib Trefferwahrscheinlichkeit und Länge der Bernoulli-Kette an.
Ein Würfel wird 4 Mal geworfen und die Anzahl der geraden Zahlen notiert. Handelt es sich um ein Bernoulli-Experiment? Wenn ja, dann gib Trefferwahrscheinlichkeit und Länge der Bernoulli-Kette an.

Binomialkoeffizienten

Der Binomialkoeffizient gibt in Bernoulli-Ketten die Anzahl der Pfade an, bei n Durchführungen genau r Treffer zu erhalten.
Dies wird bei der Berechnung von Wahrscheinlichkeiten bei Bernoulli-Ketten benötigt.

Schreibweise:

  • wie ein Vektor (n über r in runden Klammern)
  • Gelesen: "n über r"
Berechnung: mithilfe der nCr-Taste deines Taschenrechners, also zuerst n eingeben, dann nCr-Taste drücken, dann r eingeben. Ohne Taschenrechner:
  • Zähler: n · (n-1) · (n-2) · ... (n-r+1) [insgesamt r Faktoren]
  • Nenner: 1 · 2 · 3 · ... · r [ebenfalls r Faktoren]
  • Kürzen (bis der Nenner 1 ist!), dann verbliebenen Zähler berechnen.
Beispiel
49
7
=
?

Bernoulli Formel:

Für eine Bernoulli-Kette der Länge n lässt sich die Wahrscheinlichkeit P(X=r), dass die Zufallsgröße X genau r Treffer (Trefferwahrscheinlichkeit p) hat mit der Bernoulli-Formel berechnen:

Bn,p = P(X=r) = (nr) · pr · (1 − p)n-r
Beispiel 1
Ein Würfel wird 5 Mal geworfen.
Wahrscheinlichkeit für genau vier Einser:
 
?%
Wahrscheinlichkeit für höchstens zwei Quadratzahlen:
 
?%
Beispiel 2
Wie oft muss ein Würfel mindestens geworfen werden, um mit einer Wahrscheinlichkeit von mindestens 80% mindestens eine 1 zu würfeln?
Eine Zufallsgröße X heißt binomialverteilt nach B(n;p), wenn X die Werte 0, 1, 2, ..., n (n natürliche Zahl) annimmt und wenn P(X=k)=(nk)·pk·(1−p)n−k gilt.

Zählt X die Anzahl der Treffer bei einem Bernoulli-Experiment, so ist X binomialverteilt.

Berechnung von Wahrscheinlichkeiten mit dem GTR:

Gegeben: Bernoullikette der Länge n mit Trefferwahrscheinlichkeit p.

Wahrscheinlichkeit für GENAU r Treffer:

Bn,p = P(X = r) = binompdf (n , p , r)

Wahrscheinlichkeit für HÖCHSTENS r Treffer:

Fn,p = P(X ≤ r) = binomcdf (n , p , r)

Wahrscheinlichkeiten der Art P( X ≤ k ) einer binomial verteilten Zufallsgröße X können mit unterschiedlichen Hilfsmitteln (WTR, CAS/MMS, GTR, Tafelwerk) bestimmt werden. Man beachte, welche Hilfsmittel für die Prüfung zugelassen sind!

Um P( Z > k ) zu bestimmen, ermittelt man erst den Wahrscheinlichkeitswert für das Gegenereignis "Z ≤ k" und zieht diesen dann von 1 ab.

Beispiel 1
n
=
150; p
=
0,3
P
 
X ≥ 50
 ≈ ▇
Beispiel 2
Eine Urne enthält eine weiße und 7 schwarze Kugeln. Wie oft musst du mindestens eine Kugel (mit Zurücklegen) ziehen, um mit einer Wahrscheinlichkeit von mindestens 80% mindestens 2-mal "weiß" zu ziehen?
Antwort: mindestens ?-mal
Beispiel 3
Die Verarbeitung von Bauteilen wird als "sehr gut" bezeichnet, wenn man in einer Stichprobe von 100 Stück mit einer Mindestwahrscheinlichkeit von 96% maximal 3 defekte Bauteile findet. Wie hoch darf der Anteil an defekten Bauteilen maximal sein?
Antwort:
 
? % (gerundet auf eine Dezimale)

In einer Bernoulli-Kette der Länge n und Treffer-Wahrscheinlichkeit p bezeichne die Zufallsgröße X die Trefferzahl. Dann gilt:

  • Erwartungswert μ(X) =n·p
  • Standardabweichung σ(X) = √ n·p·(1-p)
Beispiel
Eine Münze wird 200-mal geworfen. Die Zufallsgröße X stehe für die Anzahl der geworfenen "Wappen".
Wahrscheinlichkeit, dass X einen Wert innerhalb der 2σ-Umgebung annimmt:
P
 
μ
 
 
X
 
 
μ
+
 
 
?%

Sigmaregeln zu gegebenen Umgebungen um den Erwartungswert:

  • ca. 68,3% der Werte von X liegen im Intervall [μ-σ;μ+σ].
  • ca. 95,5% der Werte von X liegen im Intervall [μ-2σ;μ+2σ].
  • ca. 99,7% der Werte von X liegen im Intervall [μ-3σ;μ+3σ].

Sigmaregeln zu ganzzahligen Sicherheitswahrscheinlichkeiten:

  • 90% der Werte von X liegen im Intervall [μ-1,64σ;μ+1,64σ].
  • 95% der Werte von X liegen im Intervall [μ-1,96σ;μ+1,96σ].
  • 99% der Werte von X liegen im Intervall [μ-2,58σ;μ+2,58σ].

Wenn die Laplace-Bedingung σ > 3 erfüllt ist, erhält man mit den Sigmaregeln zuverlässige Werte.

Beispiel
Eine Münze wird 50-mal geworfen. Die Zufallsgröße X stehe für die Anzahl der geworfenen "Zahlen".
Gib ein Intervall an, in dem sicher 90% der Werte von X liegen.