Du bist nicht angemeldet!
Hast du bereits ein Benutzer­konto? Dann logge dich ein, bevor du mit Üben beginnst.
Login
Hilfe
  • Hilfe speziell zu dieser Aufgabe
    Die Quersumme der gesuchten Zahl lautet 16.
  • Allgemeine Hilfe zu diesem Level
  • Distributivgesetz:

    a · b + a · c = a · (b + c)

    a : c + b : c = (a + b) : c

    Gilt ebenso, wenn man + durch − ersetzt.

    Natürlich kann man in jeder Zeile auch die Seiten (links und rechts von =) vertauschen.

Berechne im Kopf mit Hilfe des Distributivgesetzes.

123
·
79
23
·
79
=
  • Nebenrechnung
Distributivgesetz:

a · b + a · c = a · (b + c)

a : c + b : c = (a + b) : c

Gilt ebenso, wenn man + durch − ersetzt.

Natürlich kann man in jeder Zeile auch die Seiten (links und rechts von =) vertauschen.

Beispiel
Berechne trickreich:
879
·
56
+
121
·
56
=
?
Enthält jeder einzelne Summand einer Summe denselben Faktor, so kann man diesen ausklammern, also als Faktor vor die Summenklammer schreiben (Distributivgesetz "rückwärts"):

a · b + a · c = a · (b + c)

(Ebenso mit − statt +)

Beispiel 1
110
z
·
44
=
22
·
5
22
·
2z
=
22
·
5
2z
Beispiel 2
Klammere so aus, dass in der Klammer betragsmäßig möglichst kleine ganze Zahlen stehen:
8
9
 
z
+
4
2
3
Beispiel 3
 
 
38
·
z
z
·
19
·
x
=
19
·
2
·
z
z
·
19
·
x
=
19
·
z
·
2
19
·
z
·
x
=
19z
·
2
x
Enthält jeder einzelne Summand einer Summe denselben Faktor, so kann man diesen ausklammern, also als Faktor vor die Summenklammer schreiben (Distributivgesetz "rückwärts"):

a · b + a · c = a · (b + c)


Man kann auch ganze Terme, z.B. Summen, ausklammern:

(x+y) · b + (x+y) · c = (x+y) · (b + c)