Du bist nicht angemeldet!
Hast du bereits ein Benutzer­konto? Dann logge dich ein, bevor du mit Üben beginnst.
Login
Hilfe
  • Allgemeine Hilfe zu diesem Level
  • a2 = a · a.

Berechne ohne Taschenrechner (Brüche in der Form a/b).
Hinweis: Diese Aufgaben sind eine Wiederholung der Quadratzahlen als Vorübung für das Rechnen mit Wurzeln.

16
2
=
7
2
=
40
2
=
0,5
2
=
  • Nebenrechnung
Lernvideo
Quadratwurzel
Lernvideo
Die reellen Zahlen und warum Wurzel 2 nicht rational ist

a2 = a · a.

Beispiel
Berechne:
5
2
=
?
80
2
=
?
0,3
2
=
?
4
2
=
?
Die Wurzel einer positiven Zahl a ist diejenige positive Zahl, die quadriert a ergibt, also

(√a)2 = a.

Die Zahl unter der Wurzel nennt man Radikand.

Beispiel 1
0,0016
=
16
10000
=
4
100
2
=
4
100
=
0,04
Beispiel 2
3
6
25
=
81
25
=
9
5
2
=
9
5
Zu den reellen Zahlen ℝ gehören alle rationalen Zahlen ℚ und alle irrationalen Zahlen.

Rationale Zahlen kann man als endlichen Bruch darstellen. Als Dezimalzahl haben sie keine, endlich viele Nachkommastellen oder die Nachkommastellen wiederholen sich periodisch.

Irrationale Zahlen kann man nicht als endlichen Bruch darstellen. Als Dezimalzahl haben sie unendlich viele Nachkommastellen, die sich nicht periodisch wiederholen.
Beispiel
Welche der reellen Zahlen sind rational, welche irrational?
3
3
5
2
0,1
6
2
 
 
1,4142135...
Unterscheide folgende Zahlenmengen:
  • N = {1, 2, 3, ...}
    Menge der natürliche Zahlen
  • Z = {0, ±1, ±2, ±3, ...}
    Menge der ganze Zahlen; enthält über N hinaus auch noch 0 und die negativen (ganzen) Zahlen
  • Q = {p/q | p ∈ Z, q ∈ N}
    Menge der rationalen Zahlen; enthält über Z hinaus auch noch alle (nicht ganzzahligen) Brüche
  • R
    Menge der reellen Zahlen; enthält über Q hinaus auch noch alle irrationalen Zahlen wie z.B. √2 oder π
Beachte beim Rechnen mit Variablen, dass (weil a auch negativ sein könnte)

√(a²) = | a |

Der Betragstrich ist nicht nötig, wenn a < 0 ausgeschlossen werden kann. Ist hingegen bekannt, dass a negativ ist, kann man statt des Betrags auch konkret schreiben

√(a²) = −a

Ob eine Variable unter der Wurzel positiv oder negativ ist, erschließt sich oft indirekt aus der Aufgabenstellung.

Beispiel
Gegeben ist der Term 
x
6
.
Welche Werte können für x eingesetzt werden und wie lautet der vereinfachte Term?