Du bist nicht angemeldet!
Hast du bereits ein Benutzer­konto? Dann logge dich ein, bevor du mit Üben beginnst.
Login

Prüfe, ob die Wertepaare jeweils Lösung der Gleichung sind. Kreuze richtig an.

3
 
x
+
4
 
y
=
1
(-1|1) ist Lösung der Gleichung.
(-1|-1) ist Lösung der Gleichung.
(1|-1) ist Lösung der Gleichung.
(2|1) ist Lösung der Gleichung.
  • Nebenrechnung
Jede lineare Gleichung mit einer Unbekannten kann auch zeichnerisch gelöst werden: Die Terme links und rechts vom Ist-gleich-Zeichen werden dabei als Geraden interpretiert (y = ...). Zeichne die Geraden ein und schaue, ob und - wenn ja - wo sie sich schneiden.

Spezialfall: Besteht der Term links oder rechts vom Ist-gleich-Zeichen nur aus einer Zahl c, so handelt es sich um eine waagrechte Gerade durch den Punkt (0|c). Ist diese Zahl c = 0, so handelt es sich um die x-Achse.

Beispiel
Löse durch Zeichnung:
a
 
2
1
2
 
x
=
3
+
1,5
 
x
 
     
 
b
3x
+
0,25
=
1
2
Jede lineare Gleichung mit zwei Variablen x und y kann als Gerade interpretiert werden. Jeder Punkt (x- und y-Koordinate) der Gerade stellt eine von unendlich vielen Lösungen dar.
Beispiel
0,6x
0,75y
=
1,8
Stelle diese Gleichung als Gerade dar und lies drei Lösungen ab.
Ist eine Gerade g durch ihre Steigung m und einen beliebigen Punkt P ∈ g gegeben, so kann man den y-Achsenabschnitt t leicht bestimmen:
  1. Ausgangspunkt ist die Geradengleichung y = m·x + t (für m setze die bekannte Steigung ein).
  2. Setze dann den Punkt P ein, d.h. ersetze x und y durch die Koordinaten von P.
  3. Löse schließlich die Gleichung nach dem gesuchten t auf.
Beispiel
Wo schneidet die Gerade, die durch m = -1,6 und P(2 | -0,5) gegeben ist, die y-Achse?)
Folgende Ausnahmefälle hinsichtlich der Lage zweier Geraden sind zu beachten:
  • Die Gleichung g(x) = h(x) lässt sich nicht lösen; d.h. die Geraden haben keinen Schnittpunkt, liegen also parallel zueinander
  • Die Gleichung beschreibt eine wahre Aussage wie z.B. 0 = 0; d.h. die Gleichung hat unendlich viele Lösungen, die beiden Geraden liegen also aufeinander, sind identisch.
  • Eine Geraden ist senkrecht, z.B. x = 5; dann kann die andere Gerade sie, wenn überhaupt, nur bei x = 5 schneiden.

Den Schnittpunkt zweier Geraden ermittelt man, indem man ihre Funktionsterme gleichsetzt:

  1. Setze g(x) = h(x) und löse diese Gleichung nach x auf.
  2. Setze den ermittelten x-Wert in g(x) oder h(x) ein, so erhältst du den y-Wert des Schnittpunkts.

Spezialfall: Den Schnittpunkt einer Gerade g mit der x-Achse (y = 0) ermittelt man durch g(x) = 0.

Beispiel
Bestimme durch Rechnung den Schnittpunkt der beiden Geraden g und h mit folgenden Gleichungen:
g
:
y
=
2,1
x
3
 
          
 
h
:
y
=
4
9
 
x
+
0,9
Ein lineares Gleichungssystem mit zwei Gleichungen und zwei Unbekannten kann graphisch übersetzt werden:

Jede Gleichung (=Zeile) entspricht einer Geraden. Die Lösung des Gleichungssystems entspricht dann dem Schnittpunkt beider Geraden. Beachte die Sonderfälle:

  • keine Lösung bedeutet, dass die Geraden echt parallel sind
  • unendlich viele Lösungen bedeutet, dass die Geraden identisch sind
Um den Funktionsterm einer abgebildeten Geraden aufzustellen, musst du ihren y-Achsenabschnitt und ihre Steigung ermitteln:
  1. Der y-Achsenabschnitt lässt sich direkt aus dem Schnittpunkt der Geraden mit der y-Achse ablesen.
  2. Die Steigung erhältst du so: suche zwei Punkte auf der Geraden, deren Koordinaten sich gut ablesen lassen und betrachte das Steigungsdreieck zwischen diesen beiden Punkten. Bilde den Bruch aus der Höhe des Dreiecks im Zähler und der Breite des Dreiecks im Nenner und kürze diesen, falls möglich. Falls die Gerade fällt, schreibe noch ein Minus vor den oben ermittelten Bruch. Damit hast du die Steigung.
Ein Gleichungssystem besteht aus mehreren Gleichungen mit einer oder mehreren Variablen. Grundsätzlich sind drei Fälle denkbar:
  • eine eindeutige Lösung
  • unendlich viele Lösungen
  • keine Lösung
Beispiel
Betrachte die folgenden drei Gleichungssysteme und bestimme jeweils, falls möglich, die Lösung(en).
-----------------------
x
=
1
y
=
x
2
-----------------------
x
+
y
=
2
2x
+
2y
=
4
-----------------------
x
+
y
=
2
x
+
y
=
1
-----------------------