Hilfe
  • Hilfe speziell zu dieser Aufgabe
    0 gilt als gerade Ziffer.
  • Eine Zufallsgröße X heißt binomialverteilt nach B(n;p), wenn X die Werte 0, 1, 2, ..., n (n natürliche Zahl) annimmt und wenn P(X=k)=(nk)·pk·(1−p)n−k gilt.

    Zählt X die Anzahl der Treffer bei einem Bernoulli-Experiment, so ist X binomialverteilt.

Gib n und p an, wenn die Zufallsgröße X (annähernd) binomialverteilt ist. Ansonsten gib "!" an.

  • Der Magier wählt aus dem Publikum drei Personen aus. Diese sollen nacheinander jeweils eine Ziffer von 0 bis 9 nennen. Eine bereits genannte Ziffer darf nicht noch einmal genannt werden. Danach zieht er einen Zettel aus einem bis dahin verschlossenen Umschlag, auf dem genau diese Ziffern in der richtigen Reihenfolge stehen.
    X = Anzahl der genannten geraden Ziffern
    n =
    p =
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Eine Zufallsgröße X heißt binomialverteilt nach B(n;p), wenn X die Werte 0, 1, 2, ..., n (n natürliche Zahl) annimmt und wenn P(X=k)=(nk)·pk·(1−p)n−k gilt.

Zählt X die Anzahl der Treffer bei einem Bernoulli-Experiment, so ist X binomialverteilt.

Bei binomialverteilten Zufallsgrößen (Bernoullikette der Länge n und Trefferwahrscheinlichkeit p) ist zwischen "nicht kumuliert", also P(Z=k) und "kumuliert", also P(Z≤k), zu unterscheiden.

Bei vielen Experimenten, z.B. Ziehen mehrerer Kugeln mit einem Griff oder hintereinander ohne Zurücklegen, liegt keine Bernoullikette vor, daher kommen hier andere Formeln zur Anwendung.

Beispiel
Aus einer Urne mit 10 Kugeln, von denen 4 weiß sind, werden 5 durch Zufall gezogen. Gib jeweils einen Term an für die Wahrscheinlichkeit…
a) dreimal Weiß, wenn hintereinander mit Zurücklegen gezogen wird.
b) höchstens dreimal Weiß, wenn hintereinander mit Zurücklegen gezogen wird.
c) dreimal Weiß, wenn hintereinander ohne Zurücklegen gezogen wird.
d) dreimal Weiß, wenn alle 5 Kugeln auf einmal gezogen werden.
 

Bernoulli Formel:

Für eine Bernoulli-Kette der Länge n lässt sich die Wahrscheinlichkeit P(X=r), dass die Zufallsgröße X genau r Treffer (Trefferwahrscheinlichkeit p) hat mit der Bernoulli-Formel berechnen:

Bn,p = P(X=r) = (nr) · pr · (1 − p)n-r
Beispiel
Wie oft muss ein Würfel mindestens geworfen werden, um mit einer Wahrscheinlichkeit von mindestens 80% mindestens eine 1 zu würfeln?

Wahrscheinlichkeiten der Art P( X ≤ k ) einer binomial verteilten Zufallsgröße X können mit unterschiedlichen Hilfsmitteln (WTR, CAS/MMS, GTR, Tafelwerk) bestimmt werden. Man beachte, welche Hilfsmittel für die Prüfung zugelassen sind!

Um P( Z > k ) zu bestimmen, ermittelt man erst den Wahrscheinlichkeitswert für das Gegenereignis "Z ≤ k" und zieht diesen dann von 1 ab.

Beispiel 1
n
=
150; p
=
0,3
P
 
X ≥ 50
 ≈ ▇
Beispiel 2
Eine Urne enthält eine weiße und 7 schwarze Kugeln. Wie oft musst du mindestens eine Kugel (mit Zurücklegen) ziehen, um mit einer Wahrscheinlichkeit von mindestens 80% mindestens 2-mal "weiß" zu ziehen?
Antwort: mindestens ?-mal
Beispiel 3
Die Verarbeitung von Bauteilen wird als "sehr gut" bezeichnet, wenn man in einer Stichprobe von 100 Stück mit einer Mindestwahrscheinlichkeit von 96% maximal 3 defekte Bauteile findet. Wie hoch darf der Anteil an defekten Bauteilen maximal sein?
Antwort:
 
? % (gerundet auf eine Dezimale)

In einer Bernoulli-Kette der Länge n und Treffer-Wahrscheinlichkeit p bezeichne die Zufallsgröße X die Trefferzahl. Dann gilt:

  • Erwartungswert μ(X) =n·p
  • Standardabweichung σ(X) = √ n·p·(1-p)
Beispiel
Eine Münze wird 200-mal geworfen. Die Zufallsgröße X stehe für die Anzahl der geworfenen "Wappen".
Wahrscheinlichkeit, dass X einen Wert innerhalb der 2σ-Umgebung annimmt:
P
 
μ
 
 
X
 
 
μ
+
 
 
?%

Sigmaregeln zu gegebenen Umgebungen um den Erwartungswert:

  • ca. 68,3% der Werte von X liegen im Intervall [μ-σ;μ+σ].
  • ca. 95,5% der Werte von X liegen im Intervall [μ-2σ;μ+2σ].
  • ca. 99,7% der Werte von X liegen im Intervall [μ-3σ;μ+3σ].

Sigmaregeln zu ganzzahligen Sicherheitswahrscheinlichkeiten:

  • 90% der Werte von X liegen im Intervall [μ-1,64σ;μ+1,64σ].
  • 95% der Werte von X liegen im Intervall [μ-1,96σ;μ+1,96σ].
  • 99% der Werte von X liegen im Intervall [μ-2,58σ;μ+2,58σ].

Wenn die Laplace-Bedingung σ > 3 erfüllt ist, erhält man mit den Sigmaregeln zuverlässige Werte.

Beispiel
Eine Münze wird 50-mal geworfen. Die Zufallsgröße X stehe für die Anzahl der geworfenen "Zahlen".
Gib ein Intervall an, in dem sicher 90% der Werte von X liegen.