Aufgaben/Videos
Mathe nach Lehrplan
Mathe nach Schulbuch
Physik
Latein
Preise
Hilfe
Infos
Infos für Schüler
Infos für Eltern
Infos für Lehrer & Schulen
Teilnehmende Schulen
Auszeichnungen
Erfahrungsberichte
Blog
Unser Team
Kontakt
Registrieren
Login
Rationale Zahlen - Addition und Subtraktion in Anwendungsaufgaben - Matheaufgaben
- Lehrplan Nordrhein-Westfalen, Gymnasium G9, 6. Klasse
Aufgaben
Aufgaben rechnen
Stoff
Stoff ansehen
Du bist nicht angemeldet!
Hast du bereits ein Benutzerkonto? Dann logge dich ein, bevor du mit Üben beginnst.
Login
Hilfe
Allgemeine Hilfe zu diesem Level
Beispielaufgabe
Bei der Addition zweier ganzer Zahlen schaut man zunächst, ob sie dasselbe Vorzeichen haben oder unterschiedliche Vorzeichen besitzen.
Sind beide Vorzeichen gleich, so addiert man die Beträge beider Zahlen und behält das Vorzeichen bei.
Sind die Vorzeichen unterschiedlich, so zieht man die Beträge beider Zahlen voneinander ab (den kleineren vom größeren) und übernimmt das Vorzeichen der Zahl, die vom Betrag her größer ist.
Auf die abgebildete Dartscheibe werden drei Pfeile geworfen. Die erzielten Punkte werden addiert. Berechne, wie viele Punkte insgesamt erzielt wurden.
Ergebnis
blau, gelb, lila
Punkte
Nebenrechnung
√
Leeren
Zugriff ab Level 2 nur mit Benutzerkonto
Erstelle jetzt ein kostenloses Benutzerkonto. Damit hast du bei all unseren Aufgaben kostenlos Zugriff auf den 1. und 2. Level.
Benutzerkonto erstellen
Tipp
Wenn du Mathegym ohne Vollzugang weiter erkunden möchtest, kannst du entweder einen
anderen Aufgabentyp
wählen. Oder ein paar ausgewählte
Schritt-für-Schritt-Aufgaben
lösen, die wir für dich zusammengestellt haben.
Stoff zum Thema
Bei der Addition zweier ganzer Zahlen schaut man zunächst, ob sie dasselbe Vorzeichen haben oder unterschiedliche Vorzeichen besitzen.
Sind beide Vorzeichen gleich, so addiert man die Beträge beider Zahlen und behält das Vorzeichen bei.
Sind die Vorzeichen unterschiedlich, so zieht man die Beträge beider Zahlen voneinander ab (den kleineren vom größeren) und übernimmt das Vorzeichen der Zahl, die vom Betrag her größer ist.
Beispiel
54
+
−
37
=
?
Ist die subtrahierte Zahl positiv, geht es auf der Zahlengerade nach links.
Ist die subtrahierte Zahl negativ, geht es auf der Zahlengerade nach rechts.
Der Minuend (also die Zahl vor dem Minuszeichen) spielt dabei keine Rolle.
Beispiel
−
2
−
3
=
?
Titel
×
...
Schließen
Speichern
Abbrechen