Du bist nicht angemeldet!
Hast du bereits ein Benutzer­konto? Dann logge dich ein, bevor du mit Üben beginnst.
Login
Hilfe
  • Allgemeine Hilfe zu diesem Level
  • x% von einer bestimmten Größe erhält man, indem man die Größe mit x% multipliziert. Das Ergebnis nennt man Prozentwert oder auch Bruchteil (vom Grundwert bzw. der Ausgangsgröße).

Berechne den Prozentwert.

21% von 55m
=
m
  • Nebenrechnung

x% von einer bestimmten Größe erhält man, indem man die Größe mit x% multipliziert. Das Ergebnis nennt man Prozentwert oder auch Bruchteil (vom Grundwert bzw. der Ausgangsgröße).
Beispiel
Berechne 83% von 87 €.
Jedem Bruchteil (Zahl mit Einheit) kann ein Anteil (ausgedrückt als Bruch oder in Prozent) zugeordnet werden. Geht man z.B. von 600 g aus, so entspricht
  • der Bruchteil 300 g dem Anteil 1/2 bzw. 50%
  • der Bruchteil 150 g dem Anteil 1/4 bzw. 25%
  • der Bruchteil 60 g dem Anteil 1/10 bzw. 10%
Man erhält den Anteil, indem man den Bruchteil durch die Ausgangsgröße teilt. Durch Kürzen und Erweitern lässt sich evtl. ein Bruch mit Nenner 100 herstellen, so dass der Anteil in % ausgedrückt werden kann.
Beispiel
(a) In einer Teigmasse von 1,5 kg sind 250 g Zucker enthalten; das ist ein Anteil von ?%.
(b) Früher standen 12 Bäume im Garten, jetzt 18. Im Vergleich zu vorher sind das ?%.
Ist der Grundwert gesucht, so wandle den Prozentsatz in einen Bruch oder Dezimalbruch um und teile dann den Prozenwert durch diese Zahl.
Beispiel
120% von ? €
=
350 €
Achte darauf, ob der Prozentsatz die Differenz zwischen zwei Größen ausdrückt oder ob es darum geht, wie groß die eine Größe im Vergleich zur anderen ist. Eine Differenz ist z.B. bei folgenden Formulierungen gemeint:
  • "um 30% gestiegen"; der neue Wert beträgt dann 130% (= 100% + 30%) gegenüber dem alten, ist also 1,3 mal so groß
  • "Abnahme um 20%"; der neue Wert beträgt dann 80% (= 100% − 20%) gegenüber dem alten, ist also 0,8 mal so groß
  • "15% mehr als"; der größere Wert beträgt dann 115% gegenüber dem kleineren, ist also 1,15 mal so groß
Beispiel
Klassenstärke heuer: 30 SchülerInnen; letztes Jahr: 28 SchülerInnen; berechne den Zuwachs (= Differenz) in Prozent.
Vermeide beim Prozentrechnen die folgenden Fehler:
  • Falsche Zuordnung des Grundwerts
  • Prozentwert und Prozentsatz gehören nicht zusammen
Ein gutes Mittel, um solche Fehler zu vermeiden, ist die Veranschaulichung einer Situation in einem Streifendiagramm: Es besteht aus einem unterteilten Rechteck, bei dem im Inneren die gegebenen Größen und am Rand die passenden Prozentsätze notiert werden (siehe folgendes Beispiel).
Beispiel
Veranschauliche die folgende Aufgabe durch ein Diagramm und löse sie:
In Bayern gibt es heute auf 2,45 Millionen Hektar Waldgebiete. Vor der Römerzeit war Bayern auf seiner 
70
 
000km
2
 großen Fläche noch so gut wie vollständig bewaldet. Welcher prozentuale Anteil der Waldfläche wurde also innerhalb der letzten 2000 Jahre gerodet?
In manchen Aufgabenstellungen ist die Grundgleichung der Prozentrechnung nicht sofort anwendbar, z.B. wenn
  • der Grundwert unbekannt ist und mehrmals um bestimmte Prozentsätze erhöht oder verringert wird.
  • in einem Zahlenrätsel eine anfangs unbekannte Zahl mehrfach verändert wird.
  • Flüssigkeiten vermischt werden, die jeweils zu einem bestimmten Prozentsatz einen Inhaltsstoff enthalten.
In solchen Fällen kann man
  • eine Variable für die gesuchte Größe einführen, z.B. x,
  • eine Gleichung ("x-Ansatz") aufstellen, die zur Situation passt,
  • die Gleichung lösen und schließlich die Fragestellung beantworten.
Beispiel
Aylin denkt sich eine Zahl und lässt ihre Schwester Sara raten: "Wenn ich zu meiner Zahl 13 addiere und das Ergebnis um 75% verringere, kommen 50% der ursprünglichen Zahl heraus." Kannst du Sara helfen und Aylins ursprüngliche Zahl herausfinden?