Du bist nicht angemeldet!
Hast du bereits ein Benutzer­konto? Dann logge dich ein, bevor du mit Üben beginnst.
Login
Hilfe
  • Hilfe speziell zu dieser Aufgabe
    Die Beträge der einzugebenden Zahlen ergeben in der Summe 39.
  • Allgemeine Hilfe zu diesem Level
    Vor dem Ausmultiplizieren teilweise Wurzelziehen.
  • Distributivgesetz:

    a · (b + c ) = a · b + a · c    ("Klammer ausmultiplizieren")

    (a + b ) : c = a : c + b : c

    Statt + kann man auch − einsetzen, d.h. das Disriputivgesetz gilt für Summen wie auch für Differenzen, die mit einer Zahl multipliziert oder durch eine Zahl dividiert werden.

Multipliziere aus und radiziere so weit wie möglich.

7
·
12
2
 
14
=
 
 
  • Nebenrechnung
Lernvideo
Quadratwurzeln - Verbindung der Grundrechenarten, D-Gesetz
Lernvideo
Quadratwurzel - Termumformung mit Variablen Teil1

Distributivgesetz:

a · (b + c ) = a · b + a · c    ("Klammer ausmultiplizieren")

(a + b ) : c = a : c + b : c

Statt + kann man auch − einsetzen, d.h. das Disriputivgesetz gilt für Summen wie auch für Differenzen, die mit einer Zahl multipliziert oder durch eine Zahl dividiert werden.

Beispiel
Vereinfache:
3
 
32
108
·
5
 
3
6
Beachte beim Rechnen mit Variablen, dass (weil a auch negativ sein könnte)

√(a²) = | a |

Der Betragstrich ist nicht nötig, wenn a < 0 ausgeschlossen werden kann. Ist hingegen bekannt, dass a negativ ist, kann man statt des Betrags auch konkret schreiben

√(a²) = −a

Ob eine Variable unter der Wurzel positiv oder negativ ist, erschließt sich oft indirekt aus der Aufgabenstellung.

Beispiel 1
Vereinfache (x ≠ 0).
3
 
4x
2
y
:
12y
4
Beispiel 2
Vereinfache (a > 0, b > 0):
a
2
+
ab
a
+
b
:
a
+
1
Rationalmachen des Nenners bedeutet, einen Bruch so umzuformen, dass der Nenner wurzelfrei ist. Meistens erreicht man das durch Erweitern:
  • steht √a im Nenner, so erweitert man mit √a
  • steht √a + √b im Nenner, so erweitert man mit √a − √b (3. binomische Formel)