Du bist nicht angemeldet!
Hast du bereits ein Benutzer­konto? Dann logge dich ein, bevor du mit Üben beginnst.
Login
Hilfe
  • Allgemeine Hilfe zu diesem Level
    Um die Steigung einer Ursprungsgeraden zu ermitteln, gehe wie folgt vor:
    1. Suche zwei Punkte auf der Geraden, deren Koordinaten sich gut ablesen lassen und betrachte das Steigungsdreieck zwischen diesen beiden Punkten.
    2. Bilde den Bruch aus der Höhe des Dreiecks im Zähler und der Breite des Dreiecks im Nenner und kürze diesen, falls möglich.
    3. Falls die Gerade fällt, schreibe noch ein Minus vor den oben ermittelten Bruch. Damit hast du die Steigung.

Welche Gleichung passt zum abgebildeten Graphen?

graphik
 
y
=
2
3
 
x
     
 
y
=
3
2
 
x
     
 
y
=
5
3
 
x
     
 
y
=
3
5
 
x
  • Nebenrechnung

Zugriff ab Level 2 nur mit Benutzerkonto

Erstelle jetzt ein kostenloses Benutzerkonto. Damit hast du bei all unseren Aufgaben kostenlos Zugriff auf den 1. und 2. Level.
Benutzerkonto erstellen

Tipp

Wenn du Mathegym ohne Vollzugang weiter erkunden möchtest, kannst du entweder einen anderen Aufgabentyp wählen. Oder ein paar ausgewählte Schritt-für-Schritt-Aufgaben lösen (Fach Mathematik), die wir für dich zusammengestellt haben.
Wenn von einem Punkt auf der Geraden nur die x-Koordinate bekannt ist, erhält man die y-Koordinate, indem man die x-Koordinate in den Funktionsterm einsetzt und den Wert des Funktionsterms berechnet. Das Ergebnis ist die y-Koordinate.

Wenn von einem Punkt auf der Geraden nur die y-Koordinate bekannt ist, erhält man die x-Koordinate, indem man den Funktionsterm gleich der y-Koordinate setzt und die entstehende Gleichung nach x auflöst. Das Ergebnis ist die x-Koordinate.
Um die Steigung einer Ursprungsgeraden zu ermitteln, gehe wie folgt vor:
  1. Suche zwei Punkte auf der Geraden, deren Koordinaten sich gut ablesen lassen und betrachte das Steigungsdreieck zwischen diesen beiden Punkten.
  2. Bilde den Bruch aus der Höhe des Dreiecks im Zähler und der Breite des Dreiecks im Nenner und kürze diesen, falls möglich.
  3. Falls die Gerade fällt, schreibe noch ein Minus vor den oben ermittelten Bruch. Damit hast du die Steigung.
Um zu überprüfen, ob ein Punkt P(x | y) auf der Geraden liegt, setzt man den x-Wert in den Funktionsterm ein und berechnet den Termwert. Ist das Ergebnis der y-Wert des Punktes, dann liegt der Punkt auf der Geraden.