Du bist nicht angemeldet!
Hast du bereits ein Benutzer­konto? Dann logge dich ein, bevor du mit Üben beginnst.
Login
Hilfe
  • Allgemeine Hilfe zu diesem Level
    Der Wert des Bruchs darf sich nicht verändern - erweitern und kürzen ist aber erlaubt. Der Nenner ist rational, wenn er nicht unendlich viele, nicht periodische Nachkommastellen hat.
  • Rationalmachen des Nenners bedeutet, einen Bruch so umzuformen, dass der Nenner wurzelfrei ist. Meistens erreicht man das durch Erweitern:
    • steht √a im Nenner, so erweitert man mit √a
    • steht √a + √b im Nenner, so erweitert man mit √a − √b (3. binomische Formel)

Lukas hat versucht den Nenner rational zu machen. Sieh dir seine Rechnung Zeile für Zeile an. In welcher Zeile hat er den ersten Fehler gemacht? Wähle die Zeile aus.

Angabe: 
8
7
 
=
8
7
·
1
7
 
=
8
·
1
7
·
7
 
=
8
7
  • Nebenrechnung

Zugriff ab Level 2 nur mit Benutzerkonto

Erstelle jetzt ein kostenloses Benutzerkonto. Damit hast du bei all unseren Aufgaben kostenlos Zugriff auf den 1. und 2. Level.
Benutzerkonto erstellen

Tipp

Wenn du Mathegym ohne Vollzugang weiter erkunden möchtest, kannst du entweder einen anderen Aufgabentyp wählen. Oder ein paar ausgewählte Schritt-für-Schritt-Aufgaben lösen, die wir für dich zusammengestellt haben.
Lernvideo
Quadratwurzeln - Grundrechenarten, teilweise radizieren
Lernvideo
Quadratwurzeln - Verbindung der Grundrechenarten, D-Gesetz

Die Wurzel einer positiven Zahl a ist diejenige positive Zahl, die quadriert a ergibt, also

(√a)2 = a.

Die Zahl unter der Wurzel nennt man Radikand.

Beispiel 1
3
6
25
=
81
25
=
9
5
2
=
9
5
Beispiel 2
0,0016
=
16
10000
=
4
100
2
=
4
100
=
0,04
Nach dem Distributivgesetz können gleiche Wurzeln (bzw. Vielfache davon) addiert und subtrahiert werden:

a√c + b√c = (a + b)√c

Achtung: √a + √b ≠ √(a+b)
Beispiel
5
·
10
9
·
10
=
?
Ein Produkt von Wurzeln lässt sich als Produkt unter einer Wurzel schreiben und umgekehrt. Sofern weder a noch b negativ sind, gilt also

√a · √b = √(a · b)

Ein Quotient von Wurzeln lässt sich als Quotient unter einer Wurzel schreiben und umgekehrt. Sofern weder a noch b negativ sind, gilt also

√a : √b = √(a : b)

Nach dem Distributivgesetz können gleiche Wurzeln (bzw. Vielfache davon) addiert und subtrahiert werden:

a√c + b√c = (a + b)√c

Achtung: √a + √b ≠ √(a+b)

Oft kann man teilweise die Wurzel ziehen. Sofern a nicht negativ ist, kann man den Faktor a² unabhängig vom Faktor b radizieren:

√(a² · b) = √(a²) · √b = a · √b

Beispiel 1
9
·
16
=
?
9
+
16
=
?
9
+
16
=
?
Beispiel 2
50
·
2
=
?
50
2
=
?
50
=
?
Beispiel 3
108
10
·
3
=
?
Beispiel 4
108
300
=
?
Distributivgesetz:

a · (b + c ) = a · b + a · c    ("Klammer ausmultiplizieren")

(a + b ) : c = a : c + b : c

Statt + kann man auch − einsetzen, d.h. das Disriputivgesetz gilt für Summen wie auch für Differenzen, die mit einer Zahl multipliziert oder durch eine Zahl dividiert werden.

Beispiel
3
·
3
27
=
?
Ein Produkt von Wurzeln lässt sich als Produkt unter einer Wurzel schreiben und umgekehrt. Sofern weder a noch b negativ sind, gilt also

√a · √b = √(a · b)

Unter anderem ermöglicht diese Regel, Wurzeln teilweise zu radizieren. Sofern a nicht negativ ist, kann man den Faktor a² unabhängig vom Faktor b radizieren:

√(a² · b) = √(a²) · √b = a · √b

Beispiel 1
Radiziere teilweise:
720
=
?
Beispiel 2
Vereinfache:
3
 
45
·
18
=
?
Rationalmachen des Nenners bedeutet, einen Bruch so umzuformen, dass der Nenner wurzelfrei ist. Meistens erreicht man das durch Erweitern:
  • steht √a im Nenner, so erweitert man mit √a
  • steht √a + √b im Nenner, so erweitert man mit √a − √b (3. binomische Formel)