Hilfe
  • Allgemeine Hilfe zu diesem Level
  • Punkte, die auf der Symmetrieachse liegen, haben eine exklusive Eigenschaft (d.h. nur sie haben diese Eigenschaft): Sie sind zu symmetrischen Punkten gleich weit entfernt. D.h.
    • sind P und P´ zueinander achsensymmetrische Punkte und A ein beliebiger Punkt der Achse, so ist dieser zu P und P´gleich weit entfernt.
    • sind P und P´ zueinander achsensymmetrische Punkte und von A gleich weit entfernt, so muss A auf der Spiegelachse liegen.

Konstruiere mit Zirkel und Lineal:

  • Die Winkelhalbierende von ∠BAC.
    graphik

    Auswahl an Konstruktionsschritten:

    1. Kreis um B durch C, Schnittpunkt D mit Schenkel AB
    2. Kreis um C durch B, Schnittpunkt D mit Schenkel AC
    3. Kreis um A durch C, Schnittpunkt D mit Schenkel AB
    4. Kreis um C durch A
    5. Kreis um C durch D
    6. Kreis um D durch C
    Eine der folgenden Kombinationen führt zum Ergebnis:
     
    3
    4
    5
     
         
     
     
    1
    5
    6
     
    2
    4
    5
     
         
     
     
    3
    5
    6
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Punkte, die auf der Symmetrieachse liegen, haben eine exklusive Eigenschaft (d.h. nur sie haben diese Eigenschaft): Sie sind zu symmetrischen Punkten gleich weit entfernt. D.h.
  • sind P und P´ zueinander achsensymmetrische Punkte und A ein beliebiger Punkt der Achse, so ist dieser zu P und P´gleich weit entfernt.
  • sind P und P´ zueinander achsensymmetrische Punkte und von A gleich weit entfernt, so muss A auf der Spiegelachse liegen.
Beispiel 1
Ein Winkel soll halbiert werden.
graphik
Beispiel 2
(A) Von P aus soll ein Lot auf g gefällt werden (P ∉ g).
graphik
(B) Im Punkt P soll ein Lot zur Geraden g errichtet werden (P ∈ g).
graphik
Beispiel 3
Der Punkt P soll an der Achse a gespiegelt werden.
graphik