Du bist nicht angemeldet!
Hast du bereits ein Benutzer­konto? Dann logge dich ein, bevor du mit Üben beginnst.
Login
Hilfe
  • Allgemeine Hilfe zu diesem Level
  • Die Menge N (natürliche Zahlen) enthält alle Zahlen, die man zum Zählen benötigt:
    N = {1, 2, 3, ...}

    Die Menge Z (ganze Zahlen) enthält darüber hinaus auch alle Gegenzahlen sowie die Null, also
    Z = {0, ±1, ±2, ...}

    Die Menge Q (rationale Zahlen) enthält darüber hinaus auch alle nichtganzen Brüche; Q besteht also aus allen (positiven und negativen) Bruchzahlen, d.h.
    Q = {p/q, wobei p und q ganze Zahlen sind und q nicht Null}

Ordne die gegebenen rationalen Zahlen der richtigen Farbe zu (pro Zeile ein Kreuz). Achtung: "Orange" bedeutet "rational, aber nicht ganz". "Gelb" bedeutet "ganz, aber nicht natürlich".

graphik
grün    
 
gelb    
 
orange        
120
grün    
 
gelb    
 
orange        
 
3
5
  • Nebenrechnung

Zugriff ab Level 2 nur mit Benutzerkonto

Erstelle jetzt ein kostenloses Benutzerkonto. Damit hast du bei all unseren Aufgaben kostenlos Zugriff auf den 1. und 2. Level.
Benutzerkonto erstellen

Tipp

Wenn du Mathegym ohne Vollzugang weiter erkunden möchtest, kannst du entweder einen anderen Aufgabentyp wählen. Oder ein paar ausgewählte Schritt-für-Schritt-Aufgaben lösen, die wir für dich zusammengestellt haben.
Lernvideo
Rechnen mit rationalen Zahlen (Teil 1)
Lernvideo
Rechnen mit rationalen Zahlen (Teil 2)

Beispiel
Trage richtig ein:   
 
1
1
4
 
  ;  
 
0,5
 
  ;  
 
0,75
 
  ;  
 
5
6
graphik

Die Menge N (natürliche Zahlen) enthält alle Zahlen, die man zum Zählen benötigt:
N = {1, 2, 3, ...}

Die Menge Z (ganze Zahlen) enthält darüber hinaus auch alle Gegenzahlen sowie die Null, also
Z = {0, ±1, ±2, ...}

Die Menge Q (rationale Zahlen) enthält darüber hinaus auch alle nichtganzen Brüche; Q besteht also aus allen (positiven und negativen) Bruchzahlen, d.h.
Q = {p/q, wobei p und q ganze Zahlen sind und q nicht Null}

Beispiel
Ordne die Zahlen den gefärbten Bereichen zu:
4
 
     
 
4
3
5
 
     
 
12
6
graphik
Brüche können nur dann addiert oder subtrahiert werden, wenn sie gleichnamig sind (d.h. Nenner gleich). Ist das nicht der Fall, muss man sie durch Erweitern/Kürzen gleichnamig machen.
Beispiel
Hier lassen sich beide Brüche so erweitern, dass sie den Nenner 21 besitzen (weil sowohl 3 als auch 7 Teiler von 21 ist). Danach kann man sie leicht addieren:
2
3
+
1
7
=
14
21
+
3
21
=
14
+
3
21
=
17
21
Bevor man multipliziert oder dividiert, sollte man die gemischte Zahl in einen (unechten) Bruch umwandeln.
Beispiel
5
1
3
·
7
1
6
=
?
 
     
 
3
4
5
:
7
9
=
?
Achte beim schriftlichen Addieren und Subtrahieren darauf, dass die Kommata direkt untereinander stehen. Für eine bessere Übersicht kannst du am Ende Nullen anhängen.
Beispiel
0,007
+
2,3
+
300,96
=
?
Addition und Subtraktion lassen sich in der Regel mit Dezimalbrüchen einfacher durchführen als mit Brüchen, da bei Brüchen ein gemeinsamer Nenner erforderlich ist.
Treten in einem Term sowohl Kommazahlen als auch Brüche auf, so steht es einem prinzipiell frei, ob man die Dezimalbrüche in Brüche umwandelt oder umgekehrt.

Periodische Dezimalbrüche sollten dagegen zum Weiterrechnen immer in Brüche umgewandelt werden.

Beispiel
Berechne und gib das Ergebnis als Bruch oder als Dezimalbruch an.
7,35
9,3
:
3
5
·
0,
 
3