Du bist nicht angemeldet!
Hast du bereits ein Benutzer­konto? Dann logge dich ein, bevor du mit Üben beginnst.
Login
Hilfe
  • Allgemeine Hilfe zu diesem Level
  • Bei vielen Zufallsexperimenten haben wir eine konkrete Erwartung, wie oft ein bestimmtes Ergebnis eintreten wird, wenn wir das Experiment mehrmals durchführen. Dieser Anteil wird durch die Wahrscheinlichkeit für das betrachtete Ergebnis ausgedrückt.

Gib die Wahrscheinlichkeit... als Bruch an.

...dass jemand an einem Wochenende geboren wurde (vorausgesetzt, an allen Tagen werden im Schnitt gleich viele Kinder geboren):
  • Nebenrechnung

Lernvideo
Laplace Experiment

Bei vielen Zufallsexperimenten haben wir eine konkrete Erwartung, wie oft ein bestimmtes Ergebnis eintreten wird, wenn wir das Experiment mehrmals durchführen. Dieser Anteil wird durch die Wahrscheinlichkeit für das betrachtete Ergebnis ausgedrückt.
Beispiel
Wahrscheinlichkeit für "Augensumme 2" beim Würfeln?
Bei einem normalen Würfel erwarten wir, dass alle Augenzahlen gleich oft erscheinen. Also müsste sich eine bestimmte Augenzahl im Schnitt alle 6 Würfe wiederholen. Das entspricht einem Anteil von 1/6 (= Wahrscheinlichkeit).
Oft lässt sich die gefragte Wahrscheinlichkeit bestimmen, indem man die Wahrscheinlichkeiten der zugehörigen Ergebnisse addiert (Summenregel).
Jedes Ereignis E hat eine bestimmte Wahrscheinlichkeit P(E). Hierbei handelt es sich um einen Wert zwischen 0 und 1 (oder 0% bis 100%). Auf die Wahrscheinlichkeit eines Ereignisses kann man schließen
  • durch Überlegung: Beim Würfeln mit einem normalen Würfel z.B. hat "Augenzahl 5" die Wahrscheinlichkeit 1/6 (ca. 16,7%).
  • durch Statistik: Wenn man ein Zufallsexperiment sehr oft durchgeführt hat, legt die relative Häufigkeit eines Ereignisses dessen Wahrscheinlichkeit nahe.

Bei einem Laplace-Experiment kann man die Wahrscheinlichkeit eines Ereignisses E nach folgender Formel bestimmen:

Anzahl der Ergebnisse in E : Anzahl aller möglichen Ergebnisse